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Chapter I of this report contains a brief introduction to the general 
theory of asymptotic expansions, and serves as the theoretical back- 
ground for the main part of the report. 

In Chapter II, the most important methods for the asymptotic expan- 
sion of functions defined by definite integrals are developed. Double and 
multiple integrals are not included. 

The remaining two chapters are devoted to the asymptotic expansion 
of functions defined by ordinary linear and homogeneous differential 
equations of the second order. In Chapter IH, the "large" quantity is the 
variable in the differential equation, and the only case discussed in 
detail is that of a differential equation for which infinity is an irregular 
singular point of rank one with a characteristic equation which has two 
distinct roots. In Chapter TV, the "large" quantity is a parameter in 
the differential equation, and the variable is real and bounded. Both 
Liouvillc's approximation, and its generalization appropriate in a trans- 
ition region containing a single simple transition point, are discussed. 

The report is based on a course of lectures delivered in the autumn 
of 1954 at the California Institute of Technology. The author wishes to 
express his thanks to Mr. C. A. Swanson for his very able and valuable 
assistance. 
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INTRODUCTION 

It happens frequently that a divergent infinite series may be used for 
the numerical computation of a quantity which in some sense can be 
regarded as the "sum" of the series. The typical situation is that of a 
series of variable terms whose "sum" is a function, and the approxima- 
tion afforded by the first few terms of the series is the better the closer 
the independent variable approaches a limiting value (often oc ). In most 
cases the terms of the series at first decrease rapidly (the more rapidly 
the closer the independent variable approaches its limiting value) but 
later the terms start increasing again. Such series u^ed to be called 
semi-convergent (Stieltjes), and numerical computers often talk of con- 
vergently beginning series (Emde); but in the mathematical literature 
the term asymptotic series (PoincareO is now generally used. V.e shall 
see later that asymptotic series may be convergent or divergent. 

Let us consider an example first discussed by Euler(1754). The series 

(1)     S(x)= 1- l!x+2! x2-3!x3 + ...  =1  (-l)nn!a:n 

o 

is certainly divergent for all x 4 0, yet for small x (say 10~2) the terms 
of the series at first decrease quite rapidly, and an approximate numerical 
value of Six) may be computed. What function of x does this numerical 
value represent approximately? 

Euler considers 0(x)= xS(x). Then 

<Ä'(x)=l!-2!x + 3!x2-..^ *-&(*) 

or 

x2 <f> '(x) + 0(x)= x. 
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and <p(x) may be obtained as that solution of this differential equation 
which vanishes as x = 0. Alternatively, we use Euler's integral of the 
second kind, 

n  1 = f00e~ttn dt 
o 

and obtain 

S{x)= f"* e-'dt-xf^e-'t dt + xz  f00 e-'t2 dt-.-*. J 0 Jo Jo 

= 1    {-!)"  r e-'ixtrdt. 
o 0 

If we formally sum under the integral sign, S (x) becomes 

(2) 

Now, 

/       —  dt. 
Jo       l+xt 

r00  e-' 
Jo       1 + *' 

(3)    f{x)~  j         dt 
xt 

is a well-defined function of x, as a matter of fact an analytic function 
of x in the complex x-plane cut along the negative real axis, and it is 
closely related to the so-called exponential integral. The question then 
arises: in what sense does the divergent series (1) represent the func- 
tion (3)? To answer this question, we note that for m = 0, 1, 2, ... 

1 V 

1 + «'       to 1 + 

and hence 

(4)     f(x)-SB (*)+*.(«) 

where 

(5)    S   (x)=    2    (-l)»ii!x- 
n= 0 

(-xt)" 
+ 1 

Xt 
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is a partial awn of (1), and 

_."« ,«+1 
(6)     R    {x)={-x)' 1—1—   dt 

1 + Xt 
o 

is the remainder.. 
If Re x > 0, we have |1 + acfl"' < 1 and 

(7) IÄ.(*)|<0n+ 1)!|*|-H Rex>0. 

On the other hand, if Re * < C, 0 = arg x, and n/2 < ± (f> < ir, then 

|1 + J*!-1 < |cosec 0|, 

and 

(8) lÄjx)! <(m + l)!i*|a+1  | co8ec0|. Re x < 0. 

In either case, the remainder is of the order of the first "neglected" 
term of S(*), and approaches 0 rapidly as x -» 0. The limit is uniform in 
any sector |arg x\ < n - c, f > 0. If Re x > 0, the remainder is numeri- 
cally less than the first neglected term, and if* > 0, the remainder has 
also the sign of the first neglected term. Thus, for a; > 0, the series (1) 
behaves very much like a convergpnt alternating series, except that the 
smallest term of (1), which occurs when m is approximately equal to x, 
determines a limit to the accuracy beyond which it is impossible to 
penetrate. 

The theory of asymptotic series was initiated by Stieltjes (1886) and 
Poincare' (1886). We may distinguish two parts of the theory. One part, 
which we may call the theory of asymptotic series, treats topics such as 
"sums" of asymptotic series ("asymptotic limits", "asymptotic con- 
vergence"), and operations with asymptotic series (algebraic operations, 
differentiation, integration, substitution of asymptotic expansions of a 
variable in convergent or asymptotic series involving this variable, and 
the like). The most comprehensive presentation of this part of the theory 
is to be found in van der Corput's Lectures (1951, 1952) and current 
publications by the same author. In these pages we shall restrict our- 
selves to a brief introduction to the theory of asymptotic series, and shall 
devote most of our attention to the other part of our subject, to the theory 
of asymptotic expansions. Here the central theme is the construction and 
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investigation of series which represent given functions asymptotically. 
The functions arc often given by integral representations, or by power 
series, or else appear as solutions of differential equations; and in the 
latter case the "variable" of the asymptotic expansions may occur either 
as the independent variable, or else as a parameter, in the differential 
equation. 
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CHAPTER I 

ASYMPTOTIC SERIES 

1.1.  O-symbols 

ID general, the "independent variable" will be a real or complex 
variable, but in this chapter * stands for a variable element of a topo- 
logical T2-epace (Hausdorff space) except when stated otherwise. The 
variable x ranges over a set /?, and x0 is a limit point of R (which may 
or may not belong to R). <ß{x)r I/J{X), and similar symbols denote real- or 
complex-valued numerical functions of x defined when x is in R. 

The following order relations involving the order symbols 0, o will be 
used. Vie write 9!» = OdA) in R if there exists a constant (i.e., number 
independent of x) A so that \4>\ < A\I1J\ for all a; in Ä; <£ = 0 (0) as x -* xQ 

if there exists a constant/4 and a neighborhood U of x so that \c}>\ < A |0| 
for all x common to U and R; and we write 0 = o (i/r) as x -► x0 if for any 
given ( > 0 there exists a neighborhood Ue of x0 so that \<j>\ < t |i//|forall 
x common to U. and R. If 0 ^ 0 in R then the three conditions may be 
formulated more simply:^ = 0(«A) in R [as x -► x0 in /?] if <f)/ijj is bounded 
in   R   [as x -» x0   in /?],   and <f> = o (0) as x -» x0 if (^/«A -»0 as x -» x0. 

In the following examples x is a complex variable, and SA is the 
sector 0 < |x| < 00^ jarg x| < 7T/2 — A. The reader should verify each 
assertion, (i) e~x = 0(xa), e~x = o(xa) as x -» 00 in S^, A > 0, a arbitrary; 
and neither of these order relations holds (for arbitrary a) when A < 0. 
(ii) e~x - 0{xa) as x -> 00 in S provided that Re a > 0; this order relation 
fails to hold when Re a < 0. (iii) e~x = 0{xa) in S^ provided that either 
A > 0 and Re a < 0 or A = 0 and Re a = 0. 

If the functions involved in an order relation depend on parameters, in 
general also the constant A, and the neighborhoods U, V€ involved in 
the definitions will depend on the parameters. If ^4, t/, Vt may be chosen 
to be independent of the parameters, the order relation is said to hold 
uniformly in the parameters. 
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Operations with order relations are governed by a number of simple 
rules. We shall set out the more frequently used rules for the O-symbol: 
the corresponding rules hold for the o-symbol. In the following rules R 
and «0 are fixed, and the qualifying phrase "as * -» ä0" is omitted 
throughout. 

If 0 = 0(0) and a > 0 then 

(i) i^r-cxH«). 
If <£ 1= 0 (t/j j), i = 1, ... , ft and the a ^ are constants, then 

(2) 2a.^..0a|a.| l^jlX 

This relation holds also for infinite series provided that <f> . = 0(i/f ) 
uniformly in i. In the case of infinite series, equation (2) and similar 
statements will be interpreted in the following manner. If 2|aii/'i| con- 
verges then su does S ai 0i and (2) is true, and if 2 ja, i/r J diverges 
then there is nothing to state. 

li <f> . = 0{ip ), i = 1, ... , k, the a are constants, and |i/f | < ^ for 
i = 1, ... , k and for all x common to R and to some neighborhood I!Q of 

*o» then 

(3) 2a.^.-O(0X 
i 

This relation holds for infinite series provided that 0^= Od/^) uniformly 
in i, and S |a  | < «>. 

If ^^ OCt/'P, i =1, ... ,k then 

(4) U.cf>.= 0(nxlfj. 
i i 

The proof of (1) is immediate. To prove (2),we remark that by assump- 
tion there are numbers A . and neighborhoods U i of *,) associated with 
the <f) .\i the number of the ^>i is finite, there is an A larger than all the 
A ., and a neighborhood U contained in all the U ^ and 

ISa.^lS.SIaJ^I^I^SIa.l 10,1 

when x is common to R and u, and this proves (2). If there is an infinite 
number of cf> ., then the existence of A and V follows from the uniformity, 
in i, of the order relation. (3) can be deduced from (2) since  under the 
circumstances envisaged we may take U above to be contained in UQ and 

then 
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A1\a.\ I^I^SIaJ 0 = 4, 0 

where z^, = /4 S |a ^ is a finite constant. The proof of (4) is similar to that 
of (2). 

Order relations may be integrated either with respect to the inde- 
pendent variable or with respect to parameters. For the sake of simplicity 
we shall restrict ourselves to integrals with respect to real variables. 
Extensions to complex and abstract variables are possible. 

Let a: be a real variable, let R be the interval a < x < b, and let 
(f> = 0(0) as x -» 6. If </> and 0 are measurable in R then 

(5)     /      0(0 dt = 0{J      |0(f)|  dt)      as x -  fc. 

Proof: If /     |0(0| dt = oo, there is nothing to prove. If /     |0l dt < eo 
X X 

for some x, then A and X exist so that /     |0| dt <<*> and |0(x)| <4 |0(x)| 

for A" < x < 6, and hence 

\Jb <j>{t)dl\< [b \<t>(l)\dt<A Jb\il,(t)\dt    for    X<x<b. 
X X X 

Let x be a variable element of the set /? in a Hausdorff space, let y 
be a real parameter, a < y < ß, and let 0(x, y) = 0(0 (x, y)), uniformly 
in y, as x -> x . If for each fixed x in /?, 0 and 0 are measurable func- 
tions of y in a < y < ß then 

(6)     //  0U,   y)^y = 0(/cf |0(x, y)|rfy)    as    x-x o 

The proof is similar to that of (5), On account of the uniformity of the 
0-symbol, A and Ü are independent of y, |0l < A |0|, and (6) follows by 
integration of this inequality with respect to y. 

It is in general not permissible to differentiate order relations either 
with respect to the independent variable or with respect to parameters. 
However, some general results on the differentiation of order relations 
exist in the case of analytic functions of a complex variable (see 

sec. 1.6). 
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We conclude this section with a few formulas concerning combinations 
of order relations 
(7) 0(0 (<?!.)) =0(0) 
(8) 0 (o(0)) = o (0 («£)) = o (o (./O) = o (./» 
(9) 0(0) 0(0) =0(0^) 
(10) O(0)o(0) = o(0)o(0)=o(00) 
(11) O(0) + O(0)-=O(0) + o(0) = O(0) 
(12) o(0) + o(0)=o(0) 

The  j roof of these formulas is immediate,  and they can be extended to 
combinations of any finite number of order symbols. 

In referring to the above rules we shall quote the number of the equa- 
tion  which expresses th     final  conclusion,   and we shall use  the  same 
number to indicate the corresponding rule for the o-symbol. For instance, 
(1) will indicate either the rule that 0 = 0(0) and a > 0 imply |0|a=O(j01a) 
or the rule that 0 = o(0) and a > 0 imply 101 a= o(|0|a). 

1.2.   Asymptotic sequences 
In this section R, x, x0, 0 have the same meaning as in sec. 1.1. A 

finite or infinite sequence of functions,- 0,, 02, ... , will be abbreviated 
as {0  {. 

The sequence of functions 10 I is called an asymptotic sequence for 
x -* x in R if for each «» 0n is defined in R and 0n+1 = o(0n) as x -* x0 

in R. 
If the sequence is infin'te and 0 +t = (>(0 ) uniformly in n, then l0ni 

is said to be an asymptotic sequence uniformly in n. If the 0 depend on 
parameters and 0 +1 = o(0 ) uniformly in the parameters, then l0nl is 
said to be an asymptotic sequence uniformly in the parameters. 

We proceed to give some examples of asymptotic sequences in which x 
is a complex variable, R is the complex plane except when otherwise 
specified, and SA   is the sector defined in sec. 1.1. 

(i) Kx-^)"},    **x0; 

(ii)   l.x~nl,    x -* <*•; 

(iii)   \x     "j,     x -► oo in S^, 
where Re \  ., > Re X   for each n; 

(iv)  \x     %     x-~, 
\   real and A  +, > A.   for each n; 
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-\ 
(v)   \e'x      "j 

and x and An either as in (iii) or as in (iv); 

(vi)  le   nx x     ni,     x - « in SA, 
and either A > 0 and the A    are as in (iii) or A > 0 and the A    are arbitrary: 

(vii)   ir(x)/r(x+ B)|, r -♦ oc in 5^, A > -77/2. 

The reader should verify that each of the sequences (i) to (v;i) is an 
asymptotic sequence, and should justify the restrictions imposed upon A 
and A in these examples. VUiy is (iii), with arbitrary Im A , not an asym- 
ptotic sequence for X -* ee ia the complex plane (without restriction to 
some S*)? The infinite sequence W{x — n)/^{x + n)\, n = 1, 2, ... is 
not an asymptotic sequence for * -» oo in any region including unbounded 
portions of the real axis, but it is an asymptotic sequence for x -► oo in 
any region whose closure lies entirely in the upper or the lower half- 
plane. The finite sequence ir(x - n)/r(x + n)\, n = 1, 2, ... , N, is an 
asymptotic sequence for x -► oo in any R. 

From given asymptotic sequences new such sequences may be ob- 
tained by processes which are largely based on the operational rules of 
order symbols given in sec. 1.1. In describing some of these processes 
we shall restrict ourselves to real variables although extensions to more 
general variables are possible. In most cases x and R will not be 
mentioned: in such cases they are fixed. 

Any subsequence of an asymptotic sequence is an asymptotic sequence. 
The proof follows from 1.1(8). 

If\4> ! '* o" asymptotic sequence and a > 0, then 1 |<p | al is an asym- 
ptotic sequence. The proof follows from 1.1 (1). 

Two sequences, to i and ti// I, no connected that d» = 0(ii ) and 
\l> = 0(0 ) for each n, are said to be equivalent. If {0 } and \UJ 1 are 
equivalent sequences and l<£ 1 is an asymptotic sequence, then Xxp \ is 
also an asymptotic sequence, lo prove that I 0 I is asymptotic we remark 
that 

iAn+J = O(0n+1) = O(o(</.n))=O(o(O(i//n)))=oUn) 

by 1.1 (8). 
If {(f> \ and \il/  1 are asymptotic sequences containing the same number 

of functions, then \<f>    ifj I is an asymptotic sequence. The proof follows 
from 1.1 (10). 
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IfXffrJl, « - 1, ... , N, is an asymptotic sequence, an^ ^ n = 1, ... , A'; 
( = 0, 1, ... , A < iV is a set of positive constants, an + l i< a„# if

or a^ 
n, i and 

(1) ^" Jo"-»1^-^ »-1...../V-*, 

tAen  ti/'n( »« an asymptotic sequence. 
In this statement /V may be finite or infinite; k is finite. To prove the 

statement we remark that it follows froTi k being finite that for any n and 
any f > 0 there exists a neighborhood üe of x0 so that |^>r + 1| < "ds^J in 

the common part of U£ and R for r = re, re + 1, ... t n 4- A. We then have 

(2) ^n+1-  ^«„^J^^.U   *   .^«„.il^J-^n 

The extension to infinite sums is contained in the following theorem. 
Let \<t>n\ be an asymptotic sequence uniformly in n,let a     ., re= 1, 2,..., 

( »0, 1, ... be a set of positive constants such that an + 1   .< an ifor all 
n, i and put 

(3) 0.-   .2    an.j0n + i| re = 1.2,... 
»= o 

If the infinite series for xjj x converges in some neighborhood of xQ, then 
there is a subset R0 of R so that xQ is a limit point of /?0, all infinite 
series (3) converge tre R0, and \^n\ is an asymptotic sequence for x -* x0 

in R0, uniformly in n. 
Proof: From the uniform asymptotic property of {0^1, it follows that there 
exists a subset /?, of R so that x0 is a limit point of R , and|0n + 1j< |<3J 
for all x in R t and all re. For x ia R x 

2 «B+l., |0n+1 + il < 2 an# .I^J < .... < 2 a,, ^i+1| 

so that all infinite series (3) are dominated by the series for i/»,. If the 
series for (/it  converges in a subset R2 of R, and xQ is a limit point of 
R   , we take /?0 to be  the common part of Ä,  and R z. All functions ün 

are defined in R Q, x0 is a limit point of/?0, and on account of the uniforn 
asymptoticpropertyofl0nl» equation (2) with A: = oo holds uniformly in re. 
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New asymptotic sequences may be formed by intepration in two 
different ways. 

If\<j)n(x, y)i is an asymptotic sequence uniformly in y, a <y < [■, for 
* -* x0 in ft, and if all integrals 

(4) *„(*)-// |0BU.y)My 

exist, then {«I> I is an asymptotic sequence. The proof follows frorr 
1.1(6). As in the case of (3), it is sufficient to assume tiial all 9 ix, y) 
are measurable functions of y, and that ö, is integrable. 'ihe intepra- 
bility of all <$> , possibly for a more restricted set R0, then follows by 
showing that/|<£  \dy is dominated by /jcpj dy. 

If x is areal variable, R is the interval a <x < fe, 1^ { is an asymptotic 
sequence for x -* b, and if atl integrals 

(5) *>) = //^(Old* 

exist, then \<t> 1 is an asymptotic sequence for x -* b. The proof follows 
from 1,1 (5), and it is again sufficient to assume that all <^) are measur- 
able and <£ is integrable; the result then follows at least for some inter- 
val a ] < x < 6. 

Note that the differentiation of an asymptotic sequence does not 
necessarily yield an asymptotic sequence. For instance, take 

p   = x~,1[a -r cos(xn)l n = 1, 2, ... . 

Then 1<^) i is an. asymptotic sequence for x -♦ 00 on the real axis, but 
\4>'\ is not an asymptotic sequence. 

1.3.  Asymptotic expansions 

In this section and in the following sections,x, x0,/? have the   same 

meaning as  in  sec. 1.1; l0ni> liA,,!»  ^xj»  •••   »   are  always asymptotic 
sequencesfor x -» xQ in R; fix), g(x), h (x),   ... arc numerical functions 
of x defined in R; and a, b, c, ... are constants (i.e., independent of x). 

The (formal) series 2 a <£ (x) is said to be an asymptotic expan- 
sion to N terms of f{x) as x -> x0 if 

(1)    fix)-    2   an(jJnix)+oicf>N)     as     *-x0. 
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An asymptotic expansion to ^V terms will often be indicated as 

(2) /U)~L on s6fiU)      tOiV terms as%-x0 in/?, 

and  the qualifying phrase  "in /?" will often be omitted. An asymptotic 
expansion to 1 term will be written as 

(3) /•(*)-a, <£,(,:) x^Xo 

and   will   be   called   an  asymptotic   representation;   and   on   asymptotic 
expansion to any number of terms (i.e., with /V = <») will be written 

(4)    /(*) ~ S a    0 U) x - x o 

and called an asymptotic expansion. An asymptotic expansion may be 
convergent or divergent. In most textbooks only the cases /V = 1 and 
A' = oo are discussed, but we shall let N stand for any positive integer. 

If an asymptotic expansion to N terms, with /V finite, involves certain 
parameters, we shall say that it holds uniformly in these parameters if 
the remainder in (1) in o {<t>N} uniformly in the parameters. An asymptotic 
expansion   (/V  =   «>)   involving certain   parameters   will  be   said  to  hold 

uniformly in these parameters if/—    2     a    <f> n = o (,$ „) uniformly in the 

parameters  for each sufficiently  large W (but not necessarily uniformly 
in A/.). 

The   formal   (finite,   or  infinite)  series  2   a     0     will  be   called  an 

asymptotic series. If 0 = x " we shall speak of an asymptotic series 
of powers, and if 0 = % ", of an asymptotic power series. For instance, 
S(rt — 1)! (—x)n~} is the asymptotic power series expansion for x -» 0 in 
S_ /,+, of the function fix) defined by equation (3) of the Introduction. 
Some authors speak of asymptotic power series when 0n = 0o(x) x " 
but it is more appropriate to call the series divided by 0O(*) an asym- 
ptotic power series. 

From (1) it follows that the coefficients in an asymptotic expansion 
to N terms may be computed by means of the recurrence formula 

(5)     a^ =  lim    {[/"(x)-   'f      an0n(x)l/<iaii(x)| m = 1, ... , /V 
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Convert sly* suppose that we have /V + 1 functions, 

/(*),   «^jCx), ... , <j>Nix) 

defined in R. If (5) holds and am £ 0 for m = 1, ... , N then \(f>n\ is an 
asymptotic Sequence for x -* x0, and 'S, a <f> is an asymptotic expansion 
to N terms of f{x) as x -* x  . 

To prove that 10 I is an asymptotic sequence we have to show that 
<t,m +1 = °(4>m) ior m = 1, ... , N - 1. Now from (5), 

n= 1 

and if we replace m by m + 1 in (5) we have 

n= 1 

Comparing the last two equations we find 

If a ^ +) ^0 then o^ +| + o(l) / 0 for x in some neighborhood of x0, and 
we may divide by this factor to see that <£> +1 = o(<ji ). Thus |0 i is 
an asymptotic sequence. Moreover, (5) with m = N shows that (1) holds, 
and S a    (f>    is an asymptotic expansion to A' terms of f. 

If S a    0   (x) is an asymptotic expansion to A/ terms of fix), then 
the   same  formal  series will also provide   an  asymptotic expansion  to 
any   lesser  number  of  terms  of  the   same   function, ^e  also  have  the 
somewhat sharper result 

(6)     /■(*)=     2   an0nU)+0(0^,1 «-»*„,      ,V = 1, ... , /V- 1 
n =  1 

which is an immediate consequence of (1). 
^ith x and R fixed, (5) shows that the asymptotic expansion to a 

given number of terms of a given function is unique if the asymptotic 
sequence is given. On the other hand, one and the same function may 
have asymptotic expansions involving two different asymptotic se- 
quences, and the two sequences need not be equivalent in the sense of 

•   TTu« theorem wa« suggested hy Dr. A.G. Mackie. 
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sec. 1.2. For instance. 

I 

X -* oo 

In this example all three asymptotic expansions are convergent series 
when |x| > 1. It often happens that some asymptotic expansions of a 
function diverge while others converge. The transformation of divergent 
asymptotic expansions into convergent ones is of great analytical, although 
of very little computational interest. Transformations of asymptotic expan- 
sions into convergent expansions or else into expansions more suited to 
numerical computation have been investigated among others by Airsy 
(1937), van der Corput (1951), i\iiller (1952), van Wijngaarden (1953), 
Watson (1912b). 

An asymptotic expansion does not determine its "sum", fix), uniquely. 
For instance, the functions (1 + *)"', (1 + e~x)/(l + x), (1 + e~ I + x)_l 

all possess the asymptotic expansion S(—l)"- x " as a: -» oo in S^, 
A > 0. A given (finite or infinite) asymptotic sequence, \(f> I, for x -* x0 

in R establishes an equivalence relation among functions defined in R: 
f{x) and g (*) are asymptotically equal with respect to 10  I if 

fix)- gix) = o{<f>n)      as      x^x0      in    R, 

for all n occurring in  the sequence. An asymptotic series represents a 
class   of  asymptotically  equal  functions  rather  than  a  single  function. 

1.4. Linear operations with asymptotic expansions 

// f ~ S a 4- and g ~ S 6 <f) , both to N terms, and if a, ß are 
constants, then 

(1)     afix) +ßSix)^1iaan+ßbn)<t>n{x)     to   N   terms. 

The proof of this theorem is obvious, as is its extension to a linear 
combination of an arbitrsry finite number of asymptotic expansions. The 
extension to  an infinite  series of asymptotic expansions is as follows: 
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If fjix) ^ 2 a^ . 0n(x) to N terms, uniformly in i, t = 1, 2, ... , and if 
the aiare constants for which S a .converges absolutely and 

(2) A    =    la      a 

converges for each n, then H a . f (x) converges in some neighborhood of 
x0, and 

(3) F{x)=    2     a./.(x)~2^    0   (x)      to/V terms. 

Proof:    We have 

/ . —    S    a      (i   =o(<i.,) ' « _,       n, iT'n V^JV' 
n —  i 

uniformly in i, and 2 ja^ < c». By 1.1(3), 

i—i n — ' 

and the infinite series on the left is convergent at least in some neigh- 

borhood of x„. Adding   2*    A    <£>    to both sides we have (3) when N < «o, 
n=  ' 

If A' = oo then both the assumptions and the conclusion hold for all 
sufficiently large N, and hence 2, 4 <+> is an asymptotic expansion of 
F{x). 

More   generally,  we  may  extend  (1) to  finite   or  infinite  asymptotic 
expansions. 

Let !</) I, n = 1, ... , A < oo and ti/( I, m = 1, ... , M < oc be asymptotic 
sequences for the same R, x0; and let <£>N = 0{IJJm) for each m: if 
/" ~ S a    <6    to M terms and for each n, <i    ^ 2 6      ih     to HI terms, then 
J n       n J '   n mn   T   « 

(4) f{x) ^ 2 c^ \1JU{X)   to M terms, 

where 

(5)    c.-    i anbmH  . 
n= 1 
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Let  t0nl> i =  1,  2,  ..^ , and l^f^i,  »n =  1, ... , iW < v« 6e asymptotic 
sequences; suppose that for each n there is an integer fi{n) < M so that 
fiin) ■* it as n •* m and d>    = 0{i//   , .): tY /" ~ 2 a    d» , d>   ~ 2 6      0 
to M terms uniformly in n, 2 a    is absolutely convergent, and the infinite 
series in (5) is convergent for each m; then (4) holds. 

The proof for M, N finite is immediate, since then 

JU 

by 1.1(3). U M = oo, then the same reasoning holds for any M, and hence 
2 c^ i/f^ is an asymptotic expansion (with M = oo) of fix). Ir the exten- 
sion to N = oo we use the extension of 1.1(3) for infinite series. 

We now turn to the integration of asymptotic expansions either with 
respect to a real parameter y, or with respect to the variable x. la the 
latter case x will be assumed to be a real variable. 

If f{x, y) ~ 2 a (y) <f> (*) to N terms, uniformly in y, a < y < ß, if 
fix, y), for each fixed x, and a (y), for each fixed n, is a measurable 
function of y, and if h (y) is an integrable function of y for which each of 
the integrals 

(6) An = ffhiy)aniy)dy 

exists, then also the integral 

(7) Fix)=Sß hiy)fix,y)dy 
a. 

exists for each x in some neighborhood of x0, and 

(8) F(x)~2/4    d>   ix)   to/V terms. 
n  * n 

The proof is very similf to that given above for infinite series, 
except that 1.1(6) must be used instead of 1.1(3). Some generalizations 
of this theorem are obvious: the interval (a, ß) may be replaced by any 
measurable set, of finite or infinite measure, and there is a similar result 
for multiple integrals. 
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Let x be a real variable, let R be the interval a < x < b, let Id)   (x)\ be n 
art asymptotic sequence of positive functions for x ^ b, and assume that 
each of the integrals 

(9) <D   (;r) = /6 ^   (t)dt 

exists. If fix) ^ 1. a n <p n{x) to N terms as x -* b, and fix) is a measurable 
function, then 

(10) Fix)~ jb fit)dt 
X 

exists in some interval c < x < b, and 

(11) F(x)~2a    «1>   ix)      to A' terms as x-» 6. n       n 

The proof follows from 1.1 (5). 
It is, in general, net permissible to differentiate asymptotic expan- 

sions either with respect to the variable x, or with respect to parameters. 
Some general results on the differentiation of asymptotic expansions of 
analytic functions of a complex variable exist and will be given in sec. 
1.6. 

1.5.  Other operations with asymptotic expansions 

Multiplication of asymptotic series does not in general lead to an 
asymptotic series, for in the formal product of 2 a <£ and 2 6 0 all 
products <f> <f} occur, and it is in general not possible to arrange the 
system of functions \<p 0 I, m, n = 1, ... , S so as to obtain an asym- 
ptotic sequence. There are, however, important special asymptotic 
sequences {<f> \ with the property that the products <f> <p either form an 
asymptotic sequence, or else possess asymptotic expansions in terms of 
an asymptotic sequence (which need not be 10 I). First we shall prove a 
general result on the multiplication of two asymptotic expansions. 

Let \(p I, n = 1, ... , N, \^im\, m = \ ... , M, and \xk\y k = 1, ... , K be 
three asymptotic sequences such that <£, i/»w = Oixl(X (pN xpt = OiyK), 
and 

(1)     «A,,^., ^S c^ x*      to Ä terms. 
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///~ 2 an <t>n to N terms and g ^ 1 bm iPm to M terms, then fg'^1Ck xk 

to K terms, where 

(2)     C. =    2       2    a    6    c   , . 
n = 1    «= i 

Here K may be finite or infinite; N, M are finite. The result remains true 
if M, or A', or both M and N are infinite, provided that each of the in- 
finite series {or double series) in (2) converges. 

The coefficients C k are those obtained upon multiplication of 2 a    <f> 
and 2 6^  tl1 m   and substitution of (1) so that instead of (2) we may say 
"where   the  coefficients  Ck  are obtained  by  formal  substitution",  and 
this  description will  be  used in similar cases throughout this section. 

Re first prove the theorem for finite A', M, K. 

n = 1 «= 1 

n= 1    ■= i 

by (1) and (2). This proves the result. If (1) holds to any number of terms 
and <^t i//„ and 0 0, are 0(xt), for any k, then the above computation 
holds for any K, and the extension to ^ = «> holds. The extension to 
infinite M, /V can similarly be justified provided that the infinite series 
defining Ct converge. 

A sequence of functions, [<£>  i, n = 1, ... , /V will be called a multipli- 
cative asymptotic sequence if\^>  ! is an asymptotic sequence, «i, = 0(1) 
and <ß    cj)     'N-2c,<£,    to/V terms, m, ra = 1, ... , A. In the case of   a 
multiplicative asymptotic sequence the former result on the multiplication 
of asymptotic expansions can be extended considerably. 

If{<j>  1, re = 1, ... , N is a multiplicative asymptotic sequence, 

/". ~ 2 a      <^        to N terms i = 1, ... , k, 

and P {z., ... , ZJL)*
5
 
a polynomial in the k complex variables z,, ... , z k, 

then F{x)=P{fAt ... , fj possesses an asymptotic expansion 2 .4 n (pn 

to N terms, and the coefficients A may be computed by formal substi- 

tution. 
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To prove this theorem we remark that in the case of a multiplicative 
asymptotic sequence {«£nl we have ^i, 0^ = 0(0 ), and we also have an 
asymptotic expansion of 4>n <f>m to /V terms. By our genera] theorem, it 
follows from /'~2an0ntoA' terms and g ~ 2 fcn <£ to A' terms that fg 
possesses an asymptotic expansion S c 0 to Ä terms, and the coef- 
ficients cn may be computed by formal substitution. The evaluation of 
any polynomial P{f}, ... , fk) can be reduced to a finite number of oper- 
ations each of which involves either a linear combination, or the multi- 
plication, of twr. asymptotic expansions. Each of these operations pre- 
serves the asympL .tic character of the expansion, and in each operation 
the resulting expansion may be computed by formal substitution. Hence 
the theorem. 

The result obtained for polynomials can, under certain circumstances, 
be extended to (convergent), power series, and even to asymptotic power 
series. For the sake of simplicity, we shall restrict ourselves to the case 
of a single variable z; there  is a generalization to the  case  of several 
variables. 

Let \tj> (, re = 1, ... , A be a multiplicative asymptotic sequence such 
that <f>% = o(l), and 10,j" = O(0„) for some positive integer M. If 
fix) ~ 2 c     zm to M terms as z -♦ 0 in the complex plane, and 

z = z(x) "^ 2 a    0     to N terms as x -* x0 in R, 

then F{x) = /(z (x)) possesses are asymptotic expansion 'S, A cf> to N 
terms as x -* x , and the coefficients An may be computed by formal 
substitution. 
Proof: From the assumptions it follows that z" possesses an asymptotic 
expansion S fc .(f) to N terms, and also that 2 " = 0(0 ). Hence we can 
apply the theorem in sec. 1.4 on the substitution of an asymptotic expan- 
sion into an asymptotic expansion. 

An important particular case concerns functions f{?c) which possess 
asymptotic expansions of the form 

IJ 

(3)     /■(*)= c+    1    an9n + o(0AI). 
n= ' 

The  theorem shows that [fix)]       also possesses an  asymptotic  expan- 
sion of this form provided that c ^ 0 and 10  I satisfies the assumptions 
of the theorem. In other words, asymptotic expansions of the form (3) Aay 
be   divided. This  enables  us to  extend the  last theorem  but  one   from 
polynomials to rational functions. 
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'/'«pj» « = 1.... ,/V is a multiplicative asymptotic sequence, 0,^0(1), 
\<j>\ |     - 0{<f3   ) for some M, /". ~ 2 a    .(b   to N terms, t = 1 , ... , k, and 
Pi \  • « "• iff 

V2,, ... , zfc)is o rational function in the k complex variables r,, ... , z. 
such that the denominator is different from zero when z , = ? 2=««- = z . =0; 
then F{x)=P {ftt ... , fk) possesses an asymptotic expansion AQ + 3L A <f> 
to N terms, and the coefficients A may be computed by formal substi- 
tution. 

Under the same conditions we also have an asymptotic expansion for 
g{F (x)) if g (4) is a function of the complex variable £ which is regular 
in some neighborhood of £0 = P (0, ... , 0). In this manner we may justify 
the  asymptotic expansions of expressions such as exp[P{fx, ... , /'.)]. 

1.6   Asymptotic power series 

The sequence of functions \x~n\, n «• 0, 1, 2, ... or n « 1, 2, ... is a 
multiplicative asymptotic sequence for x-♦ 00 in any region of the complex 
plane which does not include the origin. This sequence satisfies all the 
conditions imposed upon asymptotic sequences in the two preceding 
sections, except that in some of the theorems of sec. 1.5, n = 0 must be 
excluded. Besides, this system has some special properties. 

1 he asymptotic expansion 

a       a 
il)    /Xx)~a0H -+—■+'"      to ZV terms as x-» 00 

xx 

is an asymptotic power series. From the results of sections 1.5 and 1.6 
it follows that an asymptotic power series expansion may be multiplied 
by ä constant, and that two such expansions may be added or multiplied, 
and also divided provided that a0 ^ 0 in the expansion in the denominator. 
Asymptotic power series may be substituted in finite linear combinations, 
in polynomials, in rational functions provided thai the denominator does 
not   vanish   as  x  -»  <»,   and   in  asymptotic   or  convergent power series 
2, c     z", z -► 0, provided that in the expansion  (1) of z = /"(x) we have 
a    = 0. Substitution of (1) in other types of convergent or asymptotic series 
is valid under the conditions set out in sec. 1.5. In all these cases the 
coefficients   of  the  new  expansion  are  obtained  by formal  substitution 
and a rearrangement of terms. An asymptotic power series expansion (1) 
which is valid uniformly in a parameter may be  integrated with respect 
to   this parameter. Lastly, if (I) holds, then fix) - a0 - a x/x is inte- 

grable, and 



i-ß ASYMPTOTIC SERIES 21 

(2) ^(«)-/f [/(O-ao-^L« 
a2 as a4 ^ — H = + =-+ •"      to /V — 2 terms as * -» <». 
x       2x2     3x3 

A simple corollary of this last result is the following theorem on differ- 
entiation.///(x) in (1) is differentiable and if {'^possesses an asymptotic 
power series expansion, then 

a,      2a       3a 
(3)     /■'(*) ~ \ r-i -2- .     to A'- 1 terms as «-► «.. 

x       x x 

In the case of analytic functions a more definite statement can be 
made in that it is not necessary to assume that fix) possesses an 
asymptotic power series expansion. Let R be the region 

|x| > a,      a < arg x < ß, 

let o^O, a<a1</3t<j8, and let R , be the region 

1*1 >ai.      ai <arg* < ßr 

If f(x) is regular in R and (1) holds uniformly in arg x as x -* ao in R, then 
(3) holds uniformly in arg ar as x -* oa in /?,. The proof of this theorem 
follows from Cauchy's integral formula for the derivative. 

(4)    f 
2ni  Jc       U-z)2 

For given /?,/?,, there exists an f > 0 so that for each x in /?,, the 
circle with center x and radius f |x| is in R, and we may take this circle 
as the contour of integration in (4). Along the circle, z = x + txe lt, and 
0 < t < 2 n-, so that (4) becomes 

(5)    /■'(,)=    / e~»7[«a + *e ")]«/<. 
I"** Jo 



22 ASYMPTOTIC EXPANSIONS 1.6 

i\ow, e f{{x -t- c e l )] possesses an asymptotic power series expansion 
uniformly in t, and this may be integrated with respect to t, showing that 
f'{x) possesses an asymptotic power series expansion which turns out to 
be (3). 

Asymptotic power series expansions are usually valid in sectorial 
regions, and analytic functions possess different asymptotic expansions 
in different sectors {Stokes' phenomenon). That something like this must 
nappen, except in the case of an analytic function which is regular at 
infinity, follows from the following theorem. 

// f{x) is single-valued and regular when \x\ > a, and (1) holds for all 
values of arg x, then the power series in (1) converges for sufficiertly 
large values of |x|, and its sum if f{x\ To prove this, we set x = 1/^ 
and g(0) = o0, g(a = /(1/a 0 < i^|_< lol*'. Then g(^) is a single- 
valued continuous function in |<f | < |a| , and is regular except possibly 
at £ = Q. However, at ^:= 0, g has certainly no pole, nor an essential 
singularity, since it is bounded in any neighborhood of ^ = 0. Thus, 
g C^) is regular at <f = 0 and possesses a Maclaurin expansion. From the 
uniqueness theorem on asymptotic expansions it follows that (1), with 
x = 1/if, must be the Maclaurin expansion. 

1.7. Summation of asymptotic series 

It has been pointed out in sec. 1.3 that an asymptotic sequence 
t<^) { determines an equivalence relation between functions defined in R. 
Two functions defined in R are asymptotically equal if their difference is 
o{,<j> ) for all ". Asymptotically equal functions possess identical asym- 
ptotic expansions, and given an asymptotic expansion / ~ S a <£ , we 
may define the class of all functions which are asymptotically equal to f 
as the sum of the asymptotic series £ a    <p . 

We shall conclude this chapter by proving that every asymptotic 
series possesses a sum. Results of this nature have been proved for 
asymptotic power series by Borel and Carleman (1926), for series domin- 
ated by an asymptotic series of powers by van der Corput (1954 b), and 
for asymptotic series of analytic functions by Carleman (1926). The 
proof given below is an adaptation of van der Corput's propf. 

An asymptotic series is a formal finite or infinite series 2 a ^n^x^ 
where 10 i is an asymptotic sequence and the an are constants. Since 
any subsequence of an asymptotic sequence is also such a sequence, 
we may assume that a ^0 for each n. The asymptotic sum of 2 an 0n is 
a class of asymptotically equal functions, and we shall demonstrate 
the existence of the asymptotic sum by constructing a member of this 
class. If 2 a    0    is a finite asymptotic series, then the sum 
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a, <t>y + "' + aN<l>N 

in the ordinary seuse may be taken as a representative of the asymptotic 
sum. It is sufficient, then, to give the proof for an infinite asymptotic 
series S an «^n in which a   ^0 for each n. 

Let f/0 be a neighborhood of x0, and for each n = 1, 2, ... let V   be a 
neighborhood oix^ such that the closure oi U   is in V     . and 

l°n+1^n + s!<-|an0nl 

for all x common to V   and R: such a neighborhood exists since 

an-H   ^n + ,  =O(a
n0„). 

For each n let fx (x)be a continuous function of x such that 0 < // (x) < 1 
in R. u. {x) = 0 when x is outside U and u (x) = 1 when a; is in i7 ., : 
such a function exists since the closure of U   ., is contained in {/ . Then 

(i)    lan+p^+pW^+/-)|<
2"Pl«n0nU)| 

when x is in 1/ , for this inequality holds by the construction of the t/'s 
if x is in r   .   , and the left-hand side vanishes when x is outside U   .   . n+p' n+p 
Let 

(2)     /■(*)=    f    an^nU)<?!.nVx). 

The series converges for all a; by (1), and defines a function fix) in R. 
(Actually, the series terminates except for those x which are in all the 
U .) To show that /" ~ 2 a <i as x -* x., iix N and let x be in the 
common part of f/w +1 and R. Then /in(*) = 1 for n = 1, ... , A', and by (1) 

i/- J^^J < Ji |a^n 0J < |% + I ^ + ll /+) 2-+'- 

Thus it is seen that £ a 0 is an asymptotic expansion to any number 
of terms of / defined by (2). The asymptotic sum of 2 an <f>n is the class 
of all functions asymptotically equal to f. 
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The Un may be constructed in such a manner that x0 is the only point 
common to all the U in which case the series in (2) terminates for all 
* £ X

Q' If all the (f> are continuous in R, also f will be continuous in R. 
If x is a real variable, or a point in n-dimensional Euclidean space, the 
^n(a:) may be chosen as infinitely differentiable functions, and if all the 
<f>n are h times continuously differentiable {k < oo), then /(*) will also be 
k times continuously differentiaüle. Carleman has proved that for certain 
analytic functions cf> of a complex variable x, the asymptotic sum con- 
tains a function which is an analytic function of  x. 

In general there is no way of ascribing a unique asymptotic sum to 
an asymptotic series, but under rather special circumstances it may 
happen that under more precise assumptions on the coefficients of the 
asymptotic series, and under certain restrictions on the functions f{x), 
a unique sum may be obtained; and frequently in such cases the asym- 
ptotic series, though divergent, is in some sense summable lo its asym- 
ptotic sum. Such theorems for asymptotic power series summed by 
analytic functions regular in some sectorial region were obtained by 
Watson (1912 a) and Nevanlinna (1916), 



ASYMPTOTIC SERIES 25 

REFERENCES 

Airey, J.H., 1937: Philos. Mag. (7) 24. 521-552. 

Borel, Lmile,  1895: Ann. Sei. EL ~lc Norm. Sup. (3) 12, 9-55- 

Borel, Emile,  1899: Ann. Sei. Ecole Norm. Sup. (3) 16, 8-136- 

Borel, Emile,  1928: Lecpns sur les series divergentes, second ed. Paris. 

Bromwich,   T.J.  I'A.,   1926:  Infinite   aeries,   second   ed.,   McMillan,   especially 
sec. 113ff. 

Carleman,   T.G.T.,    1926:   Les   fonctions   quasi-analytiques.   Paris,   especially 
Chap.V. 

van   der   Corput,   J.G.,   1951:   Asymptotic   expansions.   Parts  I   and   II. National 
Bureau of Standards (Working Paper). 

van der Corput, J.G.,  1952: Asymptotic expansions. Part III. National Bureau of 
Standards (forking Paper). 

van  der  Corput,  J.G.,   1954a:   Nederl. Akad. Wetensch.,  Amsterdam,   Proc.  57, 
206-217. 

van  der  Corput,  J.G.,   1954b: Asymptotic Expansions  I. Fundamental theorems 
of Asymptotic s. Department of Mathematics, University of California, Berkeley. 

Knopp, Konrad,  1928: Theory and application of infinite series, especially Chap. 
XIV. 

Miller, J.C.P.,  1952: Proc. Cambridge Philos. Soc. 48, 243-254. 

Nevanlinna, F.E.H-, 1916: Ann. Acad. Sei. Fennieae (A) 12, no. 3, 81 pp. 

Watson, G.N., 1912a: Philos. Trans. Royal Soc. A, 211, 279-313. 

Watson, G.N., 1912b: Rend. Circ. Mat. Palermo 34, 41-88. 

van Wijngaarden, A., 1953: Nederl. Akad. Wetensch., Amsterdam, Proc, 56, 522- 
543. 



CHAPTER H 

INTEGRALS 

There are several methods for obtaining asymptotic expansions of 
functions defined by definite integrals. Copson (1946) gives a survey of 
these; and further material is contained in van der Corput's Lectures and 
in the references given at the end of this chapter. 

2.1.   Integration by parts 

Asymptotic expansions may frequently be obtained by repeated inte- 
grations by parts. As an example, let us consider the function fix) defined 
for —n < arg x < TT by the integral 

= / — dt. 
J \ + xt (D   A«) 
* 0 

Integrating by parts repeatedly, 

(2)    /■(*) = 1 - *   /      r   dt 

= l-x+ 2x2   / 
Jo 

dt 
(l+xf)J 

=     •  •  * 

i    {-l)"n\xn + {-l),'J"{m+l)lx'+'f      "   e    ^   . 
«=o / (1 + xt)" 

",    dt 2 

26 
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The last integral may be proved to be 0 (1) as a; -» 0 in 5^, A > -n/2, so 
that we have obtained a new derivation of Euler's asymptotic expansion 
discussed in the Introduction. 

The field of application of this method is somewhat limited, and it is 
not at all easy to formulate precise theorems of sufficient generality» In 
what follows we shall describe some results which seem to be basic. 

For any function /"(Of let / denote the m-th derivative, and f_m the 
m-th repeated integral, so that 

m = 1, —, ... (3) /o = -u /.= 
rf-/ 

(4) 
df. 
At 

■ 
/-.+, m = 1, 2, ... . 

Note that /_    contains m constants (one from each integration) which we 
suppose to have been chosen in some suitable manner. The formula 

(5)     /^g(f)A(t)rft= *£' sn+Ä 

where 

(6) «„-(-^[«„(/S)*.^,^)-  gn(a)Ä.n_,(a)] 

(7) ÄB = (-irj/gn(OA_n(0^ 

is obtained by repeated integrations by parts. If'(a, /3) is a finite interval, 
(5) is valid provided that g is A' times continuously differentiable and h 
is integrable; if (a,  /S) is an infinite interval then all the  integrals in- 
volved, and also the limits of gn(0 A-,,-, (*)«• t -* a, ß, must be assumed 
to exist. 

If g is yV + 1 times continuously differentiable, a further integration 
by parts shows that 

(8) «,-»* + «,♦, 

and  in certain cases it is possible to use this relation to compare the 
"remainder", Rw, with the first "neglected term" sN. 
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'If g and h are real, and g A_ff and ÄAr+t A.^,, have constant and 
equal signs for a £ t <> ß, then R has the same sign as s^ and \Rn\ 
< \sN\' The proof follows from (8) on noting that in this case R and 
^/v+i have opposite signs, and hence R and 5ff must have the same 
sign, and 

1**1" |lsyyl-!Ä^.l|- 

// g is real, |Ä_^_I| is an increasing function of t, and gN, gN+x 

have constant and equal signs for a < t <£>, or else if g is real, \h_ | 
is a decreasing function of t, and g , gÄ+l have constant and opposite 
signs for a<t<ß, then \R   \ <2\sN\. 

Vie shall prove this result when |A_      J is an increasing function off 
andg^ > 0, gJV+J >0.Then 

<\h.N.xiß)gN{ß)\-\h.N_,{a)gN(a)\ 

<|A_y¥_)(^)g/¥(/3)-A_/¥.1(a)ffw(a)| 

and hence |Äw+t| < I5«!« From (8) we then have the desired result. If 
g^ < 0 and gw-M < 0» replace g by -g. The result for decreasing jA..^.,! 
follows on replacing x by —*. 

As an application of these results, let us consider/(at) as defined by 
(1). Ifx>0, putg(f)*(l + *0"1, A^^e'* h_m{t)~ (-1)" «"Mn this 
case g^ h_m > 0 for all t > 0, and hence 0 < (-1)" Rm <(-!)" sm. Itx 
is complex our results do not apply. However, if in (1) we replace t by 
t/x and accordingly set g = (1 + f)-1, h ■ x~   exp(—i/x), and then letx 
become   complex,   with  Re  x  > 0,   then g     and g   +|   are  of constant 
and opposite sign, and \h_   _(|  is a decreasing function of (, for t >0, 
and hence |/?   | < 2|s    ]. (Actually, in this case it is easy to prove from 
(7)that|Äj<lsJ.) " 

Let us suppose now that the integrand in (5), and hence also » . R , 
depend on a variable x. If is I is an asymptotic sequence, and if in 
addition we are able to prove R ■ O (s ) by one of the above results, 
or in some other manner, then (5) provides an asymptotic expansion of 
the integral to ,V terms. For instance, in the case of (2), lxni is an 
asymptotic sequence for x -» 0; we have proved \R^ <.2|sÄ| for any N 
and Re x >0, and hence (2) is an asymptotic expansion of/(x) as defined 
in SA, A > 0. [Actually, we proved in the Introduction, and could prove 
from the last integral in (2), that the asymptotic expansion holds in the 

- 
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more extended region SA, A > -ny'2.J 
An asymptotic sequence IsJ often occurs if A it) = k{xt). Denoting by 

^_a («) the m-th repeated integral of h (u) with respect to u, we obtain 
from (5), 

(9) 
*-i 

jf gMkMdt- i'  {-i)nx-n-'[gn{ß)k.n_,{ßx) 
n — 0 

-gn{a)h_n_,{ax)]+RN. 

If the Ä:_n(u) are bounded, and the gn(/9) k_n_}{ßx) - gn(a) k_n_i{ax) 
are bounded away from zero, and it R N can be estimated as above, then 
(9) is an asymptotic expansion as x -» oo, the region of* being determined 
by the estimate of R , The apparently more general case h{t) = k[x(£it)] 
can be reduced to the former case by breaking up (a, ß) into sub-inter- 
vals in which cpit) is monotonic, and introducing <£>(t) as a new variable 
in each of these sub-intervals. In applying one or the other of the above 
criteria for the estimate oi R , we then need information about derivatives 
of the form 

L 9 y) J 

If g and 96 have derivatives of constant or alternating signs, this infor- 
mation can be obtained without explicit computation from results on 
absolutely and completely monotonic functions, see, for instance, 
Widder (1941) Chapter FV. General theorems of this nature have been 
obtained by van der Corput and Franklin (1951). The most important 
application of these methods is to integrals of the form 

fbsU)e*Mdt,     Sb git)^[xh{t)]dt. 
a a 

More general results involving functions of the form g(f)= (t — a)- ^,(0 
with g. (t) possessing continuous derivatives were obtained by van der 
Corput (1934). 

2.2.   Laplace integrals 

Integrals of the form 

(1)     f(x)= J^e-'^itidt^QW 
o 
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are called Laplace integrals. Such integrals occur in the solution of 
differential equations by definite integrals, and in many other problems. 
The infinite integral in (1) will be interpreted as the limit of f0

T as 
7" -» oo, and it will always be assumed that <£{t) is integrable over any 
interval 0 <t < T, T < oo. A function <f> will be said to belong to L (*0) 
if the integral in (1) exists, in the sense mentioned, for x = x0. It i* 
known (Widder, 1941, Chapter II) that for a function <£ in L («0), Cl^} 
exists, and represents em analytic function of x, in the half-plane 
Re (x - x0) > 0. In particular, if 0(t) is integrabl? over any interval 
0 < f < T1, r < oo, and <£(t) = 0{eat) for some constant a, as t -» oo, then 
Gl^itexisls as an (absolutely convergent) infinite integral, and repre- 
sents an analytic function of x, in the half-plane Re (x - a) > 0. 

Under certain circumstances, the asymptotic behavior of/(x) as x -♦ oo 
may be investigated by integrations by parts. // <f>{t) is N times con- 
tinuously differentiable for 0 < t < a and belongs to L{x0) for some x0 

then 

(2) /(x)~2 0(n)(O)x"n", 

to N terms, uniformly in arg x, as x -» oo in S^, A > 0. To prove this, let 
Re (x - x0) > 0, and let 

(3) /"(x) = /o
a e-xt<t>{t)dt + S~e-'*<t>(t) dt. 

The second integral exists and may be integrated by parts to give 

— f -X0    Ja 

OO 

r2-- -~     /        e 0'   4.it) h. 

where 

titi-J*   e'*0" <f>{u)du 

is a bounded function, say \x(/\ < A for t >a, so that 

Ae^P-PJ* 

l«-*ol  IP-Pol 
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amx-p + ia-aoin 5 A,  A > 0. In  the first integral use 2.1(5) with 
S~<f>UX A.n = (-*)-" e-'X 

sn= [^(n)(O)-0o,,(a)e-"']x-B-, 

= ^(OU-"-' +0{e'Pa) 

and 

Here (pw (t), being continuous, is bounded, say |<^ ^'(f)] < ß for 0 < t < a, 
and 

\RN\ < B |*|"* p"1 < ß Ix|"A'-, cosec A = OOc"*-1). 

uniformly in arg x, as x -* «> in S^, A > 0. The proof is completed by 
noting that 0(e~Pa) = o{x~N), uniformly in arg x, as x -> » in 5^, A > 0. 

A considerable extension of the last theorem may be based on the 
following LEMMA. Let «£(f) and 0(0 be in L (x0) for some x0, ip{t) > 0, 
/ = Q l^!, g = Q li/'L If ettp g{p) -* oo as p -* oo for each a > 0, and if 
<f>{t) = o(i/r(f)) as t -* 0, thenf(x) = o(g(p)), uniformly in arg x, as 
x = p + ia-*ooin SA, A > 0. 
Proof: Given f > 0, there exists an a > 0 so that \<f>\ < tip for 0 <t <a. 
With this a, decompose Q i^! as in (3). As in the proof of the previous 
theorem, the second integral is 0 (e   ap) as p -* oof and 

if e''* <f,it)dt\ <eSo
a e-ptxt,{t)dt~fg{p). 

Thus 

\fM\ 
sip) 

<( + 0(Sr)' 
and this is <.2« for sufficiently large p. The uniformity in arg x follows 
from the remark that |x|/p < cosec A in S^. 

From this lemma the following theorem can be deduced. For n = 1,..., yV, 
let tf/   it) be in L (x0) for some xQ, ^nU) > 0 for t > 0, and gn= Qlv»l. 
If [tj/ \ is an asymptotic sequence for t -» 0, and eap gn(p) -* oo as p -* eo 
for each a > 0 and each n,  then lgn(p)l »s  an asymptotic sequence, for 
p -♦ +oo ; and if under these circumstances ^)(t) is ire L (x0) and 
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<t> (0 ~ 2 a    ifr   (f)      to A' terms as f - 0, 

then 

/(p) ~ 2 an gB(p)     to/V terms as p-»-t-eo. 

If in addition for each n = 1, ... , /V, gn(p)/g   («) t» bounded in S^  for 
sufficiently large \x\r then also \gn{x)l is an asymptotic sequence, and 
fix) "^ 'S, an'gn(x) to N terms, uniformly in arg x, as x -* oo in S^, A > 0. 
Proof:  From the  lemma we have gn + 1 (p) = o{gn{p)\ and hence \g   (p)} 
is an asymptotic sequence for p -► <»    To prove the asymptotic expansion 
for p -♦ oo, replace ^> by 

n— 1 

and 0 by tp      in the lemma. When x-*oo in 5A, we have from the lemma and 
the additional assumption on g   (x) that 

gn*<(*)'o(gnip))~2*!fL oi6nM)~oign(x)), 

and hence lg:n(x)| is an asymptotic sequence for * -» oo in 5A. The proof 
of the asymptotic expansion is the same as in the previous case. 

The most impo.-tant particular case of our general theorem is 

t/fn** t n    , 0 < A, < ••»< \N. 

All conditions of the theorem are satisfied: in particular, for 

we have 

g    tp) f    \x\    \    " ^ 

for x in 5A, A > 0. We then obtain the following theorem on asymptotic 
series of powers. 



2.2 INTEGRALS 33 

Let 0 < A, < A2 < ••• . If $ {$) is in L («0) for some x0 and 

c6 ^Z   a   t to N terms as t -» 0, n 

then 

/'v'SI(A)a    x     "      to N terms, uniformly in arg x, 

as x -» oo in SA, A > 0. 

Other notable examples of asymptotic sequences to which the general 

tueorem applies are 

_,       , (n-1)! 
(4)     IA   =(l-e   ')"   ', g   =  

" ' Sn     x{x+l)..>(x + n-l) 

{n~ 1)1      . 
(5)     0n = (e'-I)""', gn = 

(6)     xjj   = [2 sinh — ) 

:(*- 1) ••• (a: — n + 1) 

(2n-2)! 

(ac - n + \){x ~ n + 2) •••(* + n — 1) 

In the case of asymptotic power series or in the case of (4), /V may be 
finite or infinite, in the cases of (5) and (6) A' must be finite. 

The result obtained by integrations by parts is a particular case of 
of the above theorem for asymptotic series of powers. If <^ (0 is N times 
continuously differentiable for 0 < « < a, then it can be proved by the 
mean value theorem of differential calculus that <£(*) ~ S cf){n\Q) tn/n\ 
to A terms as f -► 0, and then (2) follows from the theorerr on asymptotic 

power series. 
In many  cases  it is possible to extend the region of validity of the 

asymptotic expansion to an S^ with A< 0. If <£ (/) is an analytic function 
of t which is regular in S^ and is O (e ot) for some constant a, as t -► oo 

in S 0, then it is permissible to rotate the path of integration in (1) to any 
ray in So, and by this means /"(*) may be continued analytically to some 
region which contains the sector -it + 6 < argU - o) < ir - 0 [see, for 
instance, Doetsch (1950, p. 362 ff.)]. If I «A„I has suitable properties along 
each ray, and «£ ~ 2 aB i/fn as r - 0 in S^, then ^~51angnasa:-oo in 
S A where A>0 - TT/2. Vie shall formulate a precise theorem for asymptotic 

series of powers. 
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If 4>{t) is a regular function of t in Sg, 4> = 0{eat), uniformly in arg t, 
for some a, as t -* oa in S o, 

\ -1 
^"^Sa^f" to/V terms, uniformly in arg t, as t -* 0 in S #, 

where 

0 < A, < A.2 <..- <X.N, 

then fix) exists at least in the sector 

-n + d< argOe - a) < TT - Ö, 

and 
-A 

/" ~ 2 an r(An) x     n      to N terms, uniformly in arg x, 

as x -* oo in S^, A > Ö - IT/2. 

The particular case of this result in which the A form an arithmetic 
progression, and <ß is represented by a convergent infinite, series 

A -1 
2a    t   n 

n 

for sufficiently small \t\  in Sg is known as Watson's lemma; it is suffic- 
ient for many applications. 

Throughout this section we investigated the behavior of (1) for large x. 
Similar methods may be used for the investigation ot f(x) as x -* x0. For 
the basic lemma see Erdelyi (1947), and for some of the most important 
results   see  Doetsch   (1950) Chapter  13 and Widder (1941) Chapter  V. 

2.3.   Critical points 

We have seen in the last two sections that under certain circum- 
stances the asymptotic behavior of integrals is determined by the beha- 
vior of the integrands at certain distinguished points, the end-points of 
the interval in the cases considered in the preceding sections. Such 
distinguished points have been called critical points by van der Corput 
(1948). There is no general theory of critical points but a few types of 
such points, and the methods adapted to deal with them may be described 

as follows. 
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First let us consider an integral of the form 

(1)    Sßg(t)e*Mdt, 
a 

where a: is a large positive parameter and h (t) is real. If h (t) lias a 
maximum at f = r, and A (f) < A (r) when t ^ r, then for large x, the modu - 
lus of the integrand will have a sharp maximum at a point vcrv near T, and 
most of the contribution to the integral will arise from the immediate 
vicinity of this maximum. The integral can be evaluated approximately by 
expanding both g and A in the neighborhood o{ t = r. This is the central 
idea of Laplace's method (sec. 2.4). We have encountered such a case in 
sec. 2.2 where h{t) = -t, 0 < t < ao, and A (t) has a maximum at t = 0. 
Accordingly, we evaluated Laplace integrals asymptotically by expand- 
ing g it) for small values of <. 

If x and A (t) are complex, and g (t) and A (t) are analytic functions of t, 
then it is often possible to deform the path of integration so that it 
passes through one or several points at which A ' it) = 0. If r is such a 
point, it is a critical point; it is possible to determine that part of the 
path of integration which passes through r in such a manner that 
x [A (t) — A(r)] is real along the path, and the integral can then be evalu- 
ated by an adaptation of Laplace's method. This is Yiiemann's method of 
steepest descents (sec. 2.5). 

Next let us turn to integrals of the form 

(2)     Jß   g(0e"*(t)^ 
a 

where we again assume that x is a large positive parameter, and k {t) 
is a real function. In general, the rapid oscillations of exp[ixh {t)] will 
tend to cancel large contributions to the integral, but this cancellation 
will not occur at the end-points, or at the stationary points of k (f). If 
k{t) has no stationary points in the interval a < t < ß, integration by 
parts (sec. 2.1) will in general give a good approximation. Stokes' 
method of stationary phase (sec. 2.9) appraises the contribution of a 
stationary point, r, to the integral by expanding g and A in the neighbor- 
hood of this point. 
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The method of stationary phnse has been extended by van der Corput 
(1936) to integrals of the form (1) where xh it) may be complex (instead 
of being imaginary, as in the method of stationary phase). According 
to van der Corput, the critical points in this case are those points, r, 
at which x* h'{t) [A"(f)]~x is real, while the imaginary part of this 
function changes its sign when t passes through r. (In the case of (2), 
h = ikt k is real, and the only points at which 

x* A'(A")-* ={lx)* k' (i")"55 

is real are the stationary points of &.) 

2.4. Laplace's method 

In the integrr' 

(1)    f(*).fß gfae + Mdt 
a 

let A (t) be a real function of the real variable t, while git) may be real 
or complex, and let x be a large positive variable. According to Laplace, 
the major contribution to the value of the integral arises from the immed- 
iate vicinity of those points of the interval a < t <_ ß at which A it) 
assumes its largest value. If A it) has a finite number of maxima, we may 
break up the integral in a finite number of integrals so that in each 
integral A it) reaches its maximum at one of the end-points and at no 
ether point. Accordingly, we shall assume that hit) in (1) reaches its 
maximum at t = a, and that A (f) < A (a) for a < r < /3. 

Assuming g continuous and A twice continuously differentiable, 
A ' (a) = 0, A" (a) < 0, Laplace introduced a new variable u by the sub- 
stitution A (a) - hit) = uz. A ' it) will be negative ina<t <a + T; for 
some sufficiently small 77. As x -► oo, 

{ix)~'j°^git)e*Mdt~-r     2u|i--lexpx[A(a)_tt2]Utt 
•'o 

where t/ = [A (a) - A (a + JJ)]^ > 0. Since only the neighborhood of a = 0 
matters, we may replace git) approximately by g(a), and u/h'it) by 
- [-2A"(a)l~X. which is the limit of u/h '(f) as t -* a, and obtain 

^(x) ~   T77-7-        gU) J" }exp[- xu2 + xAUV» du 
yji    \a) J 0 
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By the same argument, we may extend the integration to u = «. and finally 
obtain Laplace's result 

<*> r 7 i 
l2Xk"ia)] 

(2) fU)^g(a)e'h*nn  t< I *-«. 
|_ 2xh    (a) J 

Later, Burkhardt (1914) and Perron (1917) showed that the same result 
can be proved by expanding g and h in the neighborhood of a. Copson 
(1946) reproduces a simple proof of Polya and Szego, and VUdder (1941, 
Chapter VII) gives a more sophisticated proof under more general con- 
ditions. Further extensions of Laplace's formula were obtained by Bsu 
(1949 a, b; 1951 a, b), Levi (1946) and Rooney (1953). Laplace's method 
has been applied to integrals depending on two large variables by Fulks 
(1951) and Thomsen (1954), and to double and multiple integrals by Hsu 
(1948 a, b; 1951 c) and Rooney (1953). 

The following extension of Laplace's result will be derived from our 
discussion of Laplace integrals. Let g and h be functions on the interval 
{a, ß) for which the integral (1) exists for each sufficiently large positive 
x, let h be real, continuous at t - a, continuously differentiable for 
a<t<a+rf, ■q>0, and such that h' <0 for a < t < a + r), h it) < h (a) - t, 
( > 0, for a + tj < t £ ß; suppose that h' it) ^ - a{t - a)v~] and g(t) ~ 
b(t - a)^~' as t - a, A > 0, v > 0: then 

(3) fix)   =   Sßg{t)   e*hU)dt rl It \y    € {$& 
We first note that 

(4)     \Jß    g{t)exhU)dt\<e*p\x[h{a)-t]\S{     \g(t)\ dt 
a 4 T) a + T, 

In  the  interval (a,  a + 17) we   introduce a new variable u = A (a) — h{t)t 

set V = h(a) - h (a + t]) > 0, k (u) = -g{t)/h ' it) and obtain 

(5) J"*"   git) e-hU)dt = e'h{a)S" kMe-^du. 
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Now, 

u = A(a) - Ä {t) - -Ja* Ä Xr) rfr~ ^ (t - a)v as t ^ a 

and hence ;e 

Also, 

S0)    ~   iu-a)^ Bs^a 
h '(f) a 

so that 

fer 6  / av YVv-, 

(6)     Ä:(u)~ — I   ) asa-O. 

By  the results of the preceding section on  the  asymptotic  behavior of 
Laplace integrals it follows from (5) and (6) that 

(7)     CV
git)e^dt^   A   Q-Y r(~\   x-V^ exh(a) 

as x -> oo. 

and (4) and (7) prove (3). Moreover, both (4) and (7), and hence also (3), 
remain true ii x is a complex variable and x -» oo in SA , A > 0. 

A further extension of (3) leads to an asymptotic  expansion of fix). 
In the following formulas n - 0, 1, ... , A' — 1. If 

(8) -h'(t)^  •Zan{t-a)u+n-\      g(t)~   2 6rla-a)X+n-, 

to N terms as t -► a, then there is an expansion 

(9) -   S t      ~  2 c   (t - a)^~v+n to N terms as t - a 
h'it) 

and the c    may be computed by formal division. Also 

(10) u = - J * A '(r) c/r ~   }     -^—   (l - a),/+n      to N terms as t - a. 
a *—/    1/ + M 
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From this last expansion it may be shown that t — a possesses anasymptotic 
power series expansion in powers of u1/1/, this asymptotic power series 
may be substituted in (9), and leads to an asymptotic expansion of the 
form 

(11) A (u) ~  lynu ^+n~1')/v     to A' terms as u ^ <» . 

^itli (11) instead of (6), an asymptotic expansion to N terms is 
obtained for (5); (4) may be strengthened to o{x~(K*N)/v exh(a); and 
we have 

(12)  /(x)-e'Ma, SyT (^L).-^: 

to N terms as x -» oo in SA , A > 0. The coefficients y   nw   be computed by 
formal substitution according to tL ! scheme described above. 

There is an alternative procedure for the computation of the y which 
avoids the necessity for inverting the asymptotic series (10) to obtain 
the expansion of f - a in powers of u' v. From (10), 

Ä(*) = Ä(a)~~    (t-aV+A.a) 
v 

where 

*-<      v+ n 
n= 1 

%e now write 

Ja
a+77g(Oex',,(t)^ = ex',(a) ri

a+T/(t)exp     —^-  xl.t-aY     dt, 

expand 

Z(t)=g(t)exp[x/l,.(«)] 

formally  in powers of (t — a),  and integrate term-by-term to obtain (12)- 
It is also possible to construct a proof of (12) along these lines. 

2.5.  The method of steepest descents 
^e again consider the integral 

(1)    fOO-J^^e-*^*, 
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in which we now assume x to be a large complex variable, g and h to be 
analytic functions of the complex variable t, and the integral to be taken 
along some path in the complex t plane. This integral may be evaluated 
asymptotically by the method of steepest descents, which was originated 
by Riemann and developed by Debye. Copson (1946) gives a detailed 
description of this method together with references and several examples. 

Those points of the t plane at which h '{t)= 0 will be called saddle 
points or cols. The surface representing |exp[xA(«)]| as a function of 
Re t and Im t will be called the relief of exft: on this surface cols will 
be "saddles", and the most convenient trail frorr one "valley" to the 
other will lead over one or several saddles. Let r be a col: if A'Cr) = 
A" (r) = •-= h <- \r) = G ahd A (-+l \T) * 0, we call r a coZ(or saddle point) 
of order m. In the t-plane, curves along which Re xh (f) is constant are 
called level curves: along such curves e has a constant modulus (they 
are contour lines of the relief), and the phase of e changes as rapidly 
as possible. Those curves along which Im xh(t) is constant are called 
steepest paths : along such curves e has a constant phase, and the 
mbdulusof e changes as rapidly as possible (they are gradient lines 
of the relief). At a col, r, of order m; m + 1 level curves intersect at 
equal angles, and their angles are bisected by m + 1 steepest paths: 
along  each   of   the   latter  curves   |ez',"'|   has   a  stationary   point  at  r. 

The method of steepest descents consists in deforming the path of 
integration so as to make it coincide as far as possible with arcs of 
steepest paths. If a and ß lie on steepest arcs through cols, for instance 
ii a and ß are singularities of k it), then the path of integration n:ay be 
deformed so as to consist entirely of steepest paths through cols; other- 
wise two steepest arcs may occur which do not pass through cols. This 
latter case may be described by reference to the relief by saying that 
we first descend along a gradient line to a singularity and them climb the 
saddle along another gradient line. In any event. Re xh (t) is monotonic 
along any steepest path (except at saddles), and Laplace's method ir.ay 
be used to evaluate the integral asymptotically. The asymptotic expan- 
sions of g and A needed for the application of the theorem in the pre- 
ceding section are the Taylor expansions of g and A around that point of 
the steepest path at which Re xh (t) is a maximum (this is often the col). 
The inversion of the series 2.4(10) may be effected by Lagrange's 
expansion (see, for instance, Copson (1935), p. 123-125). 
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Meijer (1933 avb) has shown that numerical bounds for the error term 
may be obtained by using Lagrange's expansion with a remainder, and 
he has also shown that in some cases recurrence relations for the coef- 
ficients may also be obtained. 

We shall consider several examples of the application of the method 
of steepest descents: these are taken from Copson (1946). 

2.6. Airy's integral 
We shall investigate the-asymptotic behavior of 

(1) /4i(z)=—    / cost — s* + zs I ds 
"Jo \3 / 

for   large positive values of z. With 

(2) s = z ,/2 t,      x~zV2 

we obtain 

(3) AUx"3)*-   / exp    ixf~«3 + fj   Ut, 

and the method of steepest descents can be applied to the integral in 
(3). In (3), t may be envisaged as a complex variable of integration. The 
path of integration (for ,r > 0) is the real t axis, but it can be deformed 
into any curve which begins at infinity in the sector 2^/3 < arg t < n 
and ends at infinity in the sector 0 < arg t < ff/3. Here 

(r-4 h{t) = i\— t3 + t], A'(t)=i(t2+ 1), 

and the cols are the zeros of h '{t), i.e., the points t = ±i. The steepsst 
path?  are determined by Im A (0= const. We set t = £+ "7 and obtain 

Im h (0 =—  £3 -&12+ £,      Im Ä(± i) = 0, 
o 

so that the equation of the steepest paths is 

(4)      €(?   -   Sr,2   +   3) =  0. 
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This equation represents a degenerate cubic consisting of the imaginary 
axis and of the two branches of a hyperbola. In the figure, arrows indicate 
the direction in which Re A {t) decreases. The asymptotes of the hyper- 
bola are the lines ^ ± 7/ \/Z = 0, and clearly, the path of integration in 
(3) can be deformed into the upper branch of the hyperbola, and runs from 

oo • exp{5ni/6) to oo • exp(i7r/6). With this path, the integral in (3) can be 
seen to be convergent whenever Re x > 0. 

We now write 

(5)     2ffx-,/3/ii(x2/3)= J 
oo • exp (iTT/e ) 

-; 
oo • erp (S iTr/6 ) ,xhU) dt 

and evaluate J, 2 by Laplace's method. In both integrals, A(t) — /i(i) is 
real and reaches its maximum at t » i; also A (f) — A(0 is a decreasing 
function. We introduce a new variable u by 

(6) u =A(i)-AW -- — -i( —t3 + c J =(t -O2 »(t-03. 
3       ^3 y 3 
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From (6) 

(7)     ±U
x = (t-»)     l-li(t~i)        , 

where u is the positive square root, [ ••»..]" is that value which reduces 
to 1 at t = i, and the upper sign in (7) holds for J., the lower sign for I2. 
it follows from Lagrange's theorem that sufficiently near to the col, 
t—t possesses an expansion of the form f — i = 2 6 (±u^)n where nb is 
the coefficient of (t - i)n_1 "» the expansion of [1 — i{t - i)/3]_n/ in 
powers of t — i. In this manner the expeinsions 

(8)    • -  - -    \     - - r+.-^n 
L n!r0i/2)3n   ' 
n = l 

are obtained where the upper or lower sign holds in J,   and J2 respec- 
tively. Now 

e       l^m^ e    Tu du' 

and according to sec. 2.4 the asymptotic expansions of J, 2 are obtained 
by substituting (8) in dt/du and then integrating term-by-term. Thus 

(iiri""' r(3n/2-l) 
„f ,    2(n-l)!r(« /2)V JO " = 

y     (±i)"t"-' r(3«/2- 1) 
„4,   2(n-l)!3n-1 xn/z 

Substituting this in (5) and expressing the result in terms of z, we obtain 
after some simplification 

1 ^2       „A     V     r(3m + I/2) 

and this asymptotic representation holds, uniformly in arg z, as z -» oo in 
| arg z | < rr/3 - A, A > 0. 
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2.7.   Further examples 

We shall now consider two examples where the limits of integration 
are not singularities, and accordingly, the asymptotic expansions are not 
obtained by expansions around the col. Also, in the second example, the 
col is of order two. 

First let x > 0 and 

(1)     f(x)=S    exp o ix{— t3 + t)   \dt. 
L    V3 /J 

The function h{t) occurring here is the same as in sec. 2.6, the steepest 
paths  are those  shown in the figure in sec. 2.6,  and it  is  easily seen 
that   the  apptopriate  path  of integration  consists of that portion  of the 
imaginary axis from 0 to i and then one-half of the upper branch of the 
hyperbola. Thus, 
,   *       ,/   v        r i      roo •   exp{» 7r/6 )    ,«. /,\  , (2)    /0O=Jo+/. e **">&. 

The asymptotic expansion of the second integral has already been 
obtained. In the first integral h (t) is real and decreasing as t runs from 
0  to i,  and we may again use Laplace's method.   Accordingly, we set 

u = A (0) - A it) -'(^j'2) 

and infer from Lagrange's theorem that —*/ = S 6 u" where nbn is the 
coefficient of (-tt)n_1 in the expansion of (1 + tz/3)~n in powers of—it. 
Clearly 6   = 0 if n is even and 

it-   X 
(3/7i)!u 2M +1 

„ m!(2c: + 1)! 3' «= o 

Substituting this in the first integral in (2) and integrating term-by-term. 
OO 

Jo Jo J^o fni(2m)!3■ 

(3m)!        _,   _, 

-=0fn!3- 
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It is seen from sec. 2.6 that the second integral in (2) is exponentially 
small in comparison with the first one, and hence the result 

(3) j      exn    ixl — t3 + t]\dt^i     ?     

as x -. no in S/^, A > 0. 
Our last example is the integral 

(4) f{x)=j!kexpUxt3)dt 

. -2« - 1 

where we take a: > 0. Here h {t) = it , and f = 0 is a col of order two. The 
steepest paths through the col arc the lines Im (it3) = 0, that is the lines 
arg t = ± n/6, ± n/2, ±5^/6. In the figure, arrows indicate the direction 
of decreasing )exp(iacf 3)1 for ac > 0. None of these steepest paths passes 
through t = 1. With t = £ + i J?» the equation of the steepest path through 
t = 1 is Im (it3) = 1, or ^3 — 3 ^TJ2 = 1. This is a cubic, and the brauch 
of this cubic passing through t = 1 is also indicated in the figure. In 
order to get from 0 to 1 along steepest paths, we first integrate from 0 
to as along the line arg t ■ 77/6, and then fium «> to 1 along the upper half 
of the branch of our cubic. Accordingly, we set 
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(5) r(x)./o--P^^Lj--«P^)    exp («*')* 

In  I,  we  set u = -it3 or f = a !/3 eTr,/6, where u'^ > 0, and obtain 

(6) I,. e<77/6 J0
OOe-IU

U-2/3t/u=  r(4/3)e
i7r/6x-1/3. 

In I2, we set u = —i{t3 — 1) or t = (1 + iu)1/3 and obtain 

1 oo 
I if     e u"'u (1 + m)"273 (fu . z       3      -"o 

Expanding (1 + iu)~       in the binomial expansion, 

2 r(-l/3) n=0 

and substituting (6) and (7) in (5) we finally have 

(8)     J' exp {ixt 3)dt^r (4/3) e i7T/6 *' 

1 
e"    2    r(n + 2/3)U*)"n"' 

r(-l/3) n=0 

as x -» oo in S A , A > 0. 
The last equation describes the asymptotic behavior of fix) as « -» <» 

in the right half-plane. If x -♦ ± i oo, the integrand in (4) is real, and 
Laplace's method may be applied, and if x is in the left half-plane, we 
may use the relation 

fix) = fi-x) 

which follows from (4) and in which bars denote complex conjugation. 

2.8.  Fourier integrals 

Integrals of the form 

(1)     Jß e^tirtdt 
a 
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are called Fourier integrals. \&e shall always assume that (a, ß) is a real 
interval, and mostly (a, ß) will be a finite real interval; and (pit) will be 
anintegrable function so that (l)exists for all real x. We shall investigate 
the asymptotic behavior of (1) as x -♦ +oo; to obtain the asymptotic be- 
havior as * -» -oo,, replace t by —*• Unlike in the case of Laplace integrals 
(sec. 2.2) it seems that repeated integrations by parts is the only effec- 
tive method for obtaining asymptotic expansions of (1), except in the 
case of analytic ^»(f) when the method of steepest descents may be used. 

First we shall prove: // <f){t) is N times continuously differentiable 
for a <t < ß then 

(2) jf ei^<f>{t)dt^BN{x)-AN{x)+o{x-N) as*-«, 

M;Aere 

(3) A„i.x)=Nl!   i"-' <j>ln\a)x-n-, e*"1 

ß^U)-^1    iB-,^<n)(/S)x-n-, c"^ 

and <f)^n'= dn<f)/dtn. The result remains true when a — —oo {or ß = oo) pro- 
vided that <f>    \t) -* 0 as t -* —oo (or f -» oo) for each n ~ 0, i, ... , A' — 1, 
and provided further that <p '" \t) is integrable over {a, ß). To prove (2), 
we apply 2.1 (5) with g = 0, gn = ^^ I A = e "* A_n = {ix)~n e "*. For the 
remainder we obtain 

RN~(~i*)'*jfei't<f>{f'Kt)dt 

and  this  is o{x~,f) since the integral approaches  zero,  as x -» oo,  by 
Riemann's lemma. 

We note that A N{x) = 0 if ^) and its first /V — 1 derivatives vanish ata 
(for instance, if $ vanishes identically in some neighborhood of a), and 
also that ß „(«) = 0 ii <f> and its first N — 1 derivatives vanish at ß (for 
instance, if <j> vanishes in some neighborhood of ß). 

We now turn to Fourier integrals whose integrands have singularities 
of a simple type at one end point of the interval. 
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.If <f){t)is \ times continuously differentiable for a < t < ß; 0     (/3) = 0 
for n = 0, 1, ... , W - 1; and 0 < A < 1; then 

(4) // e *•*(< - a)K-* <f>it) dt = -ANix) + 0{x-f') as x ^ oo, 

where 

(5) AN{X)=     £    r(n + A)    e^(n>\-»)/.^(n)(g)y-^ "A._ ixa 

If <f>{t) is N times continuously differentiable for a <t <ß; <^      (a)==0 
/or n = 0, 1, ... , /V - 1; and 0 < |i < 1; tAen 

(6) ff e^iß-W tWdt-B^M+Oix-") asx^oo, 

where 

(7) ß^U)-  Y r(n - ^ e-^-M)/^ ^(jS)*-"-^^. 

With A =  1,  (5) becomes the first equation  (3), and with ^ =  1,  (7) 
becomes the second equation (3), but the O terms in (4) and (6) give less 
information  than the o  term  in  (2). Instead of 0{x~") we   could write 
o{x~N~       ) in (4), and o{?c~N~tJ' ') in (6), and these latter forms remain 
valid, and pertinent, when X= 1 or ^ = 1 respectively. 

We shall prove (4-): the proof of (6) is similar. In (4) we apply 2.1(5) 
withg(f)=<M«X Sn(t)=^(n)UX A(0 = A0(f)=e"t(t-a)^-1, and 

(8)     A. (0 = —   f i00 {u -tV (u - a)^-' e im du n    ' n I t 

n = 0, 1, ... , S — 1. 

In (8) we assume t > a, and take a path of integration which lies entirely 
in the quadrant 0 < arg(u - a) < rr/2. The integral converges absolutely, 
and 

  A    ..(*)-A    U) FI = 0, 1, ... ,/V-l. 
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If we take the ray u = t + i a, o > 0, as the path of integration, we have 
|u - a| > t - a, |« - o| < U - ar'"' for 0 < A < 1, and hence 

i^n-1u)i<^-^-/;+,>-fne-^i 
n! 

Substituting u = t + ia we have 

(9) \k.n.,U)\<U-a)X-* x-"-* t>a,x>0. 

Also, from (8), 

(   "n"*1 

n     _,(a)= I (u - a) e      du 
n   i nl a 

and, with u = a + i a, a > 0, 

(10) h       . (a) - (-1)"^ r(" * k) eni ("^-)/8 x'n-K "a       « = 0, 1, ... - 

We can now apply 2.1(5). The contributions of ß to the s vanish since 
4> (n)(/S) = 0. From (10) it follows that 2 s n = ~ A „, where ^4 ^ is given by 
(5). Moreover, from 2.1 (7), 

and by (9), 

\R„\ < *~N if l^^HOI Cl - a)^'1 dt = 0(x-^). 

This proves (4). 
Lastly we turn to Fourier integrals whose integrands have singular- 

ities at both ends of the interval. 
If ^)(t) is N times continuously differentiable for a. < t < ß, and 

0<A<l,0<fx<l, tAen 

(11)  Sß e "»(t - a)^-1 C/3 - «y*-' 0(t) dt = b^x) -AN{x) + OU'") 
a 

as x -• oo. 
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where 

(12) A   {x)~  T     r(" ^ A) e^fa^-')/« x'n'K e "a -^^ß'^''^a^ 
„=o n- da 

n = 0 ' 

and G {x~N) in (11) may be replaced by o {x~N) if X. = fi = 1, 
This theoreni contains the three previous results as special cases. To 

prove (11), we shall use a device which is frequently eirployed tor such 
purposes, and is called a neutralizer by van der Corput. Let i/(t) be an 
infinitely differentiable function for a < t < ß, v{a) = i, u (a) = 0, 
n = 1, 2, ... ; i/ \ß) = 0, n = 0, 1, 2, .... An example of such a function 
is 

Ja       'lu-a     ß-u JT 

With such a neutralizer vit) we write 

(13) ff e "'(* - a)^1 iß - ty-' <p{t) dt 

= J^ e "'(f - a)^"' [t/(0 03 - O^"' 0(«)] ^ 

+ J"0 e "UjS - 0^"' l[l - i'(t)] (« - af-~y 4>m dt. 
a 

The first integral on the right hand side is of the form (4), with 0(f) 
replaced by [ ••• J: since all derivatives of this function vanish at t = ß, 
and are equal to the corresponding derivatives of (/3 — f )'x </>(<) at f = a, 
we obtain the expression (12) for A (x). Similarly, the second integral 
on the right-hand side of (13) is of the form (6), with 0(«) replaced by 
I ••». I; all derivatives of I •••!,{ vanish at t = a, and are equal to the 
corresponding derivatives of U — a) <^(t) at t = /3; and the expression 
(12) for B^ix) follows from (7). This proves (11). If X » fi - 1, then (2) 
shows that 0(,x~N) may be replaced by o (x~w). 
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All our results remain tnie if i is replaced by —i throughout the form- 
ulas, and in (8) the integration from t to — IM is taken over a path which 
lies in the quadrant — n/2 < arg(u — a) < 0. Thus we are able to describe 
the behavior of our integrals as x -* — «>, and also the asymptotic behavior 
of Fourier integrals with trigonometric kernels cos xt and sin xt. 

2.9.  The method of stationary phase 
We now consider the integral 

(1)     f{x)=jfgit)ei'hMdt 

in which x is a large positive variable and h (t) is a real function of the 
real variable t. According to Stokes and Kelvin, the major contribution 
to the value of the integral arises from the immediate vicinity of the end 
points of the interval and from the vicinity of those points at which h {t) 
is stationary, i.e., h'{t)= 0; and in the first approximation the contri- 
bution of stationary points, if there are any, is more important then the 
contribution of the end points. 

Suppose that g is continuous and h is twice continuously differentiable, 
let r be the only stationary point oi h, a < T < ß, h   (r) = 0 and A "(»■)> 0. 
In the assumption that the neighborhood of r will give the principal con- 
tribution to the integral, we introduce a new variable of integration u by 
the substitution h(t) — h (r) = u2 and obtain 

2u i—expUx[fc(r) + a 2]Uu 
h '(t) 

-". 

where u, = [A(r - e) - A(r)]X, u2 = [A(r + <) - A(r)]K. Since only the 
neighborhood of u = 0 matters, we may replace g (t) by g(r) and 2u/h ' it) 
by [2/h "(T)]>A which is the limit of 2u/h ' it) as t-* r, so that 

r 2 lx 

ftä ""      .„,      I     gW X  2    exp[ixu2 + ixA(r)] du • 

By the same argument we may extend the integration from — <» to oc and 
finally obtain 

(2)    /(*) ~    -TTTT      S ^r) «tpti*A (r) + i ir/4] as x -» oo. 
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which is virtually Kelvin's result. The contribution of the point of sta- 
tionary phase, r, to the integral is more important than the contributions 
of the end points because the latter can be shown, by integration by 
parts, to be 0 (x'') if A ' (a) ^ 0, Ä ' (/9) ^ 0. 

The principle of stationary phase has been applied to numerous 
mathematical and physical problems but it appears to be difficult to 
formulate it in a precise manner. Perhaps the best available theorem is 
one given by Watson (1920). Poincare'discussed the principle of station- 
ary Dhase applied to integrals involving analytic functions, and the 
conn«,i ion of his work with the method of steepest descents is indicated 
in Copson (1946). The qiethod of stationary phase has also been dis- 
cussed by Bijl (1937), and in a much more general setting by van der 
Corput (1934, 1936)* 

We shall use the discussion of Fourier integrals given in the pre- 
ceding section to derive a theorem which may be regarded as a precise 
version, and at the same time generalization, of (2). A point r at which 
Ä ' (r) = A "(,', = ..,- A (" ^r) = 0 and A (» +l lr) ^ 0 will be called a station- 
ary point of order m, m = 1, 2, ..> . In the neighborhood of such a point 
A (f) = (f - r)" h y{t), where A^r) ^ 0. The notion of a stationary point 
may be generalized to fractional order. A point r will be called a station- 
ary point of (fractional) order fi if in some neighborhood of that point 
A'(f) is either of the form |t - r^A,^) or of the formsgnU - r) jt-rj^A ,(«), 
where A .(r) ^ 0. Assuming that A (f) has at most a finite number of sta- 
tionary points (of positive order) in the interval under consideration, we 
may break up the integral in a finite number of integrals in each of which 
h (t) is monotonic; and we may assume A (t) to be increasing. Thus, we 
shall consider integrals of the form (1) in which h (t) is strictly increas- 
ing when a < t < /S, and a and ß are either ordinary points (i.e., station- 
ary points of order zero), or stationary points (of positive order). 

IfO < A, /^ <;1; g(0 is N times continuously differentiable for a<t<ß; 
h (t) is differentiable and 

(3) A ' (t) = (t - o)^"' (ß - tr" A , (0, 

where p, a > \, and A . {i) is positive and N times continuously differen- 
tiable for a < t < ß; then 

(4) Sß git) e^^it - a)*--' (/3 - tV*-' dt~B{x)-A (x) 
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where 

(5) A (x) ^ Al( (?c)     and      ß(x)~ßJV(*)      to/V terms as «-♦ »o, 

and Ajyix) and ß „(*)  are given by (17) and (20) below. 
In the proof of this theorem we shall use the abbreviation 

(6) *,(«)-«(«) (t-o^-M/S-tV*"1, 

and shall employ a neulra/izer u{t\ which is infinitely differentiable for 
a £ * < ß and such that for some 77, 0 < r; < (/S- a)/2, v{t) = 1 when 
a<t <.a+ 17, and v{t) = 0 when /S — 77 < t < ß. We then set 

(7) -A(.x) = jf'71 i/(t) g ,(0 e ^ «^ dt 

(8) ßU)-/^ [l-vCOlg^e0*1*^«. 

To obtain an asymptotic expansion of A (x), we introduce a new vari- 
able of integration, u, in (7) by 

(9) «'-Ä(0-Ä(a),     uf-AO~i7)-A(a). 

From (3) we have 

«^= A(t)-A(a) = JaV(sWs 

-(t-a)^/^  y^",[/3-a~(«-a)y]C7-, A ,[a + (f - a) y] «fy 

where s = a + U — a)y. The last integral is an /V + 1 times continuously 
differentiable, positive, and increasing function of f, so that (9) repre- 
sents an /V + 1 times continuously differentiable mapping of the interval 
a ^ t £ ß ~ 1 onto the interval 0 < u < u,, and the inverse mapping is 
also N + 1 times continuously differentiable. 

We now put !/,(!*) = i/(t)   and 

(10) h(u)~g(t)uy-k-L, 1 du 
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where §,(*) is given by (6),  and fc (u) is N times continuously differen- 
tiable for 0 < u < u,. Then 

A (x) = _e fa*(«) J ", V| (u) k (u) u^-' expiixu^) du 

can be integrated by parts N times, differentiating v}k and integrating the 
remaining factor of the integrand. With 

(-1) n + l 
n .\-« (ID   0_„_1 («) -   /„    (z - u)n zK-* exp {ixz?) dz 

the result of the integrations by parts is 

4 (x) = 4 „(x)+ /?„(*), 

where 

(12) AN(.x) = *£'   (-1)" A ^»(O) ^ii., (0) e "'^ 

and 

(13) Ä^W-C-l)**' e^j"' ^(„) ^iJ    rfu. 

In (11), the path of integration is the ray arg(z — u) = n/{2p) in the 
complex plane. Clearly, 

(-1)"+1       A+A [rriin+X)!       ., +xwn (14, ^.,(o,.__r(_j^[^_J . '"^. 
To estimate 0_ _, (u) for u > 0, we note that |z|        < u        and also that 

r^+xk -u\p=i IXZ^+ X   2  — U\r = I pX / I C+ |2-"| exp—  I       d^. 

Since the real part of the last expression is certainly negative, we have 

1 exp(ixz^)| < exp(-xlz - u\p) 
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A-i 
(15)   \<f>.n.,iu)\<   ——S    \z-u\nex?(-x\z-u\nd\z-u\ 

nl        - 

<   ±rflll\ UK~,X.^ )/P 

Alternatively, the method of steepest descents may be applied to (11) to 
show that 

(16)   ^.n_,(ü) = u"+^0[(xuTn-,] 

for large xup. 
Substituting   (14) and (15) in (12) and (13) we obtein 

(17) A 
V  k (n '(0)      /rn + X\ r ir» (n + >.) 

x-{n+k)/pei*h(*) 

l'i.('^()^HTr(f)'",7',"X" 
dN{u^) 

du1 
du. 

This proves that A ~ .4 „ to A' terms when X < 1. When X = 1 and p = 1 
the same result follows from sec. 2.8. Let X = 1 and p > 1 and choose S 
so that 

(/V M7)/> d^V.k) 

du' 
du < %(. 

Since (16) gives 0_w(u) = 0{.x~N) uniformly in u when u > S, we have for 
sufficiently large x 

xN">Sly 10VU)I 
dN{u,k) 

du' 
du < %( 

so that /? „ = o{x~N^p) also in this case. This proves the result for A. 
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A similar result holds for B (x). In (8) we introduce a new variable of 
integration by 

(18) v<T=h{ß)-hit) 

and put 

(19) /(t;)-*)(«)v,-'*-L 
dv 

where g ^ (t) is given by (6). In the repeated integrals of vM- expi—ixv'*) 
we integrate along the ray arg(z — v) = —rri/{2a), and obtain by a process 
very similar to that used in the case of A that ß ~ ß     to /V terms where 

XJC-(n+M)/o-   ei*hi/3)m 

We conclude this section by applying' the general result to 

f{x) =   /    exp (ixt3) dt. 

Here   A=^=l,p=3, cr=l,u = t. A; (u) = 1   and 

/I/v(x)==l/3r(V3)e7ri/6*-,/3 

by (17). Also t; = 1 - f 3, t = (1 - t;),/3, 

i(v).±.-X(l-p)-^. 
dv        3 

and 

rU + 3/3) ,     . 
^-^TTvif^" n=0 

so that 

/(x)~r(4/3)e^/«x-'/3-    J       w+wo;   (^r"-1 e" 
n'= o 

ru + 2/3) 
 U*)  "   ' e"        as x -» on, 
r(-V3) 

which  is the expansion obtained in sec. 2.7 by the  method of steepest 
descents. Note that x -* «> through positive values with our present ir.ethod 
while x could be complex in sec. 2.7. 
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CHAPTER HI 

SINGULARITIES OF DIFFERENTIAL EQUATIONS 

In this chapter we give a brief introduction to the asymptotic theory of 
ordinary homogeneous linear differential equations of the second order. 
Analogous theories exist for equations of arbitrary (finite) order and for 
systems of differential equations of the first order. For these more 
general theories see Ince (1927, especially p. 169ff., p. 428ff., p. 444 5., 
p. 484 fU.Kamke (1944,especially, p. 17 ff., p. 60ff., p. 100 ff., p. 133 ff.), 
Wasow (1953), the references given in these works, and the references 
given at the end of the present chapter. Asymptotic expansions occur 
also in connection with non-linear differential equations, and partial 
differential equations. 

We shall investigate the asymptotic behavior of solutions of 

y" +p(x)y' + qix)y =0 

as x ^ x . Here x is either a real variable ranging over an interval (of 
which *0 is usually an end-point), or else a complex variable ranging 
over a region (of which x is often a boundary point). Without loss of 
generality, we take xo = <» throughout this chapter. 

The reader is expected to know the basic existence theorems regard- 
ing the above differential equation both for real and complex variables, 
and he is also expected to be familiar with the fundamental properties of 
the solutions. 

3.1.  Classification of singularities 

In the present section we shall discuss the differential equation 

(1)    y" +p(x)y'  +g(x)y = 0 

when x is a complex variable ranging over an annular region, R, given by 
r < |x)  < oo, and p (x) and g (x) are single-valued analytic functions in R 
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(which may or nay not have singularities at <»). We shall briefly review 
the well-known classification (see, for instance, Poole, 1936, Chapter 
IV) of isolated singularities of (1), the singularity in question being at eo. 

If y 1 (x) and y2 (ac) are two linearly independent solutions of (1) form- 
ing a fundamental system, and if we continue these functions analytically 
along some curve in R which begins and ends at x and encircles oo in the 
positive sense, we obtain two new functions which may be denoted by 
y .(xe~27Tl), / = 1, 2. These need not be identical with the y (x), but at 
any rate, they will be solutions of (1), so that relations of the form 

(2) 

yy(xe~27,l)=au yt(x) + a12 y2U) 

y2Ue"27r,)=a21 y, U) + a^ y2 (x) 

will hold. In (2), 

.. 1"°; :.«i 
is a constant non-singular matrix. 

If instead of y,, y2 we take another fundamental system, we obtain a 
matrix B, and an easy computation shows that B = MAM~ , where M is a 
non-singular constant matrix. Thus, all matrices obtained in this manner 
have the same affine invariants, in particular, the same latent roots, and 
the same canonical forms. These, then, are independent of the fundamen- 
tal system chosen, and are characteristic of the singularity at eo (if there 
is a singularity there). 

Let U3 assume that the latent roots of A are distinct so that we have a 
diagonal canonical form 

[:■ :.] 
If y,, y2 is the fundamental system corresponding to the canonical form 
of A {canonical fundamental system), then (2) assumes the form 

(3)    y/*e'zwi) = A^.U) 7 = 1,?. 
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We now set A. = cxpi'lni p ), and call p., p2 the exponents belonging to 
oo; these are determined up to an integer in each. From (3) we see that 
the canonical fundamental system is of the form 

(4)   y>U)-**P/0/*) / =   1,2 

where t/r^, ij/z are single-valued analytic functions of a; in R with, possibly, 
singularities -at oo. 

If the latent roots are equal. A, = A, = A. = exp(2 rri p), then the canon- 
ical fundamental system can be shown to be of the form 

y^x) = x~p 0,00 

(5) 

y2(x)= cy, (x) logx + x'pi/f2(x), 

where <//, and xp 2 have the same properties as in (4), and c is a constant: 
c = 0 or c ^ 0 according as the canonical form of A in this case is dia- 
gonal or not. 

x = oo is called an ordinary point of (1) if all solutions are regular at 
oo, i.e., c;an be represented by convergent power series in x-1; x = oo is 
called a regular singularity of (1) if it is not an ordinary point and if 
0, and 0 2 have at most poles at oo so that by a suitable choice of p, 
and p2, 0, and 02 can be made regular at oo; and x = oo is called an 
irregular singularity of (1) if at least one of the two functions 0,, 02 has 
an essential singularity at oo . 

It can be shown (see, for instance, Poole, 1936, section 20) that a 
sufficient condition for x = oo to be an ordinary point is 

(6) P(x)= ^x-1 +0(x~2), 9(x)=0(x"4) asx-oo, 

and  that a sufficient condition  for x = oo to be  a regular s ingularity is 

(7) pU^OCx"'), ?(x) = 0(x"2) asx-oo. 

In the case of an irregular singularity, p and q may have essential singu- 
larities at oo: if p and q have at most poles at oo, we speak of an irregular 
singularity of finite rank, and the least integer k for which 

(8) pCx^OCx*"'), g(x) = 0(x2*-2) asx^oo 

is called the rank of the irregular singularity. Sometimes, a regular singu- 
larity is regarded as a singularity of rank zero. 
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3.2.   Nonnal solutions 

If x = eo is an ordinary point of 3.1(1), we may expand y in a series 
of powers of x . The coefficients of that series may be determined from 
recurrence relations, and the series converges in R.H x = <*> is a regular 
singularity of'3.1(1), we may set 

y=    2    cnx-^n, c0^0. 
n= 0 

We then obtain a Quadratic equation for p, recurrence relations for the c 
(similar to (7) below), and a series for y which converges in /?. In either 
of these two cases the coefficients can be computed easily, and the con- 
vergent series can be used with advantage to compute the solutions for 
large x. 

The situation is entirely different if x = «o is an irregular singular 
point. Since the 0 . have essential singularities at eo, we must set in this 
case 

y=     2       c   x-P-n. 
n= —oo 

For the c we obtain an infinite system of linear equations which cannot 
be solved recurrently, and for p, a transcendental equation which involves 
an infinite determinant (the determinant of the system). In this case the 
coefficients cannot be computed easily, nor is the series rapidly con- 
vergent for large x. 

It was discovered by Thome that in the case of an irregular singularity 
of finite rank certain formal solutions exist which do not suffer from the 
disadvantages   mentioned   above;   the   coefficients   occurring   in   these 
solutions can be computed recurrently, and the series appear suitable for 
numerical computations for large x. Thome's solutions are of the form 

y = exp[P(x)]    1    c»*'^", Co*0' 
n= 0 

where P (x) is a polynomial: they are known as normal solutions. 
We shall explain the construction of normal solutions in the case of an 

irregular singularity of rank one. We first note that setting 

y = z exp (- ^ J p dx) 
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in 3.1(1), we obtain for z a differential equatkn of the form (1) in which 
z 'does not occur. Hence it will be sufficient to discuss the differential 
equation 

(1) y"+?U)y = 0 

in which 

(2) ?U)=   2   qx~n, 

the series being convergent in /? . tte shall attempt to find formal solutions 
of the form 

(3)    y-e^   2   cx~p'n* c0^0, 
n= 0 

where &> and p are constants. It is to be noted that p in (3) is not nec- 
essarily one of the exponents belonging (in the sense of the analytical 
theory of sec. 3.1) to the irregular singularity x = oo. 

In manipulating the formal series, we shall adopt the convention 
q_ = 0, c_ = 0, /n = 1, 2, ... , so that all summations may be extended 
from — oo to +oo except those explicitly stated otherwise. 

Substituting (2) and (3) in (1), we have 

(n 2 c    x"^~n-2<u2(p + n)c    x~p~n-' 
ft * ft 

+ 2(p + ra)(p + fi+ l)c   x'P-n~z+tq   x",,2c   x~P~n=^. 

Comparing coefficients here, we obtain 

(4)     o2 c    - 2<u(p + re - 1) c   _, + (p + re - 2) (p + n - 1) c   _, 

n 
+      2     <7     C =0 

v= 0 

for all integers re. The first non-vacuous condition arises when .x = 0 in 
(4). Since c0 ^ 0 we have 

(5)     6>2 + 9    =0. 
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If n = 1 in (4), and a> satisfies (5), *ve obtain 

(6) -26>p + 91 = 0. 

These two equations determine co and p. The recurrence relation for the 
coefficients may also he obtained from (4)- We replace n by n + 1, and 
use (5) and (6) to obtain 

n + 1 
(7) 2«üncn=(p + n)(p + n-l)cn_, +    2    ?l/cn + 1_v       it = 1, 2, ... . 

We now see that normal solutions exist if either qn £ 0, or q = q} = 0, 
In the former case, (5) determines CJ, (6) determines p, and with c    = 1, 
(7) determines the coefficients. Moreover, to, p, c,, ... y c are com- 
pletely determined by q , 9,, ... , 9,+,» and vice versa. There are in 
this case always two normal solutions corresponding to the two possible 
values of CJ. In the latter case,which is the case of a regular singularity 
at 00, we have &> = 0 from (5), equation (6) is vacuous, (7) with n = 1 
determines p as one of the roots of the quadratic equation p{p+ 1)+ q2 = 0, 
and (7) with n = 2, 3, ... determines the coefficients. 

If 9 =0 and 9, ^ 0, then (5) and (6) cannot he satisfied, and there 
exists no normal solution. However, subnormal solutions may be obtained 
by transforming (1) into 

(8) ,"+      4f2,(fV   -—  ■   ..,<. [4f>,(r)._lr] 
by the change of variables 

£=**, r,(£)=r*y(*)- 

If o = 0 and ^,^0, then (8) has an irregular singularity of rank one at 
00, and possesses normal solutions. These give rise to subnormal solu- 
tions of (1) having the form 

n (9)    y = expU>x,s)   2    cn x 
n= O 

in this case. 
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For the construction of normal and subnormal solution» for singularities 
ofhigher ranks, for differential equations ofhigher orders, and for systems 
of differential equations see  Ince (1927, p. 423 ff., p. 427ff„ p. 469fF.> 

p. 478ff.). 
Normal and subnormal solutions are formal solutions; i.e., if they are 

substituted in the differential equation as if the infinite series were 
convergent, the differential equation is satisfied. However, the infinite 
series involved in the fonrai solutions are in general divergent .Never- 
theless, they are far from being useless, for they represent asymptotic 
expansions of solutions of (1). This situation has been investigated by 
many authors, beginning with Poincar^: some of the papers are listed at 
the end of this chapter, and it may be noted that the most general results 
were obtained by Sternberg (1920) for the differential equation of order n 
and arbitrary (finite) rank, and by Trjitzinsky (1933) for a system of first 
order differential equations. 

By and large there seem to be two methods for proving that the formal 
solutions are asymptotic expansions of solutions of the differential 
equation. One of these was originated by Poincar£ and was developed by 
Horn in a large number of papers of which we refer but to a few at the end 
of this chapter. This method consists in finding integral representations 
of Laplace's type for the solutions, and then basing the asymptotic 
expansions on the work of sec. 2.2. The other method,which was developed 
by G.D. Birkhoff and his pupils, uses the leading terms, or partial sums, 
of the formal solutions to construct a differential equation which in a 
certain sense is close to the given equation when x is large, and then 
compares the two equations. As it happens, singular Volterra integral 
equations or integro-differential equations play an important part in both 
methods. 

We shall use a variant of the second method to discuss the differential 
equation (1) with q0£0. The proof to be given below is based principally 
on the work of Hoheisel (1924) and Tricomi (1953, sections 47 to 50). 
Since the analytic character of q and y does not enter in the formal 
solution, the investigation may be carried out either for real or for com- 
plex independent variables. 

3.3.  The integral equation and its solution 

We first consider the case of a real variable, and defer a brief dis- 
cussion of the case of a complex variable to sec. 3.5. Let us then con- 
sider 

(1)    y"+g(x)y=0 x>a>0f 
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assumir.g that q (x) is continuous for x > a and 

(2) 9(*)~    f   qnx~n as x-. oo, 9o ^ 0. 
n= O 

We then obtain two formal solutions 

(3) e*"   1    ^n*"""". c0^0 
n= O 

where w, p, c,, c2, ... satisfy 3.2(5), (6), (7). We shall show that these 
formal solutions are asymptotic expansions of certain solutions of (1). 

Let cü = CJ, + icop p = p. + ip,, and determine <o = (—90) so as to 
make e0** x~p hounded as x -» oo. If ^ is not positive real, we take that 
value of tbe square root which makes a y < 0; if <70 > 0 and Im 9 , ^0, 
we take that value of the square root which makes p1 = Re [g ,7(2 CD)] > 0; 
and if <70 > 0 and q, is real, we take either value of the square root. Thus, 
we always have either «u, < 0 or &), = 0 and p, > 0. These conventions 
will be retained throughout the discussion. 

It will be convenient to transform (1) by setting 

(4) y(x)=e&"x-^2(x) 

so that z satisfies the differential equation 

(5) Z" + 2^_^2'+L^^.^ii^u) j 2=o. 
Here at and p satisfy 3.2 (5), (6). We put 

(6) x2{oix)-q0-q, x^ + p{p+ \) = F {x\ 

and ser from (2) that F (x) is bounded, say 

(7) |F(x)|<^, x>a. 

We now rewrite (5) as 

— (e*"* x-zP — )  + e2^ x-2"-2 F(x) z (x) = 0, 
dx   \ dx / 
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integrate to obtain 

dx b 

where c    and b > a are arbitrary constants, and integrate once more to 
obtain 

(8) *(*) + fb' K{x, t)F{t)z{t) r2 dt~cx + c2 /a
x  j-^'t^dt, 

where 

t /s \2^ 
(9) K U, f) = - J    exp [2w(f - s )H — J    ds. 

Equation (8) is an integral equation of Volterra's type. Any solution 
of (5) satisfies (8) for some 6, c,, cz, and conversely, any twice con- 
tinuously differentiable solution of (8), for any b, c., c,, satisfies (5). 
The existence of such a solution follows from the general theory of integral 
equations when 6 < oo. When 6 = <», the integral equation (8) is a singular 
integral equation, and the existence and differentiability of the solution 
must be demonstrated. 

In prder to prove that (5) possesses a solution which can be repre- 
sented asymptotically by S cn x~n, we take 6 = », c , = L, c2 = 0 in (8) 
so that the integral equation (8) becomes 

do) zU) = i + f~K{x, t) F{t)zit) r* dt. 

This integral equation will be solved by the method of successive approxi- 
mations. 

For any function, ^Oe), we set 

(ii) TCix) = /" K{x, t) F{t) CU) r2 dt, 

and then define 

(12)r0(*)=l,      zrH.1(x)= ^„(x) /l = 0,l,2,... 

(13)   2(*)-    2      rB(x). 
n= O 
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It will now be proved that z OK) exists, satisfies (10), is differentiable, 
and satisfies (5). The proof will be conducted in several steps. 

The kernel, K (*, t), is bounded for t > x > x0 where x0 > a and x0 is 
sufficiently large. 
Proof:   Since either <u   < 0 or <u, = 0 and p, > 0 we have 

    log(c       '    s   ^1) = _2<u1+ -^-i   >0 
ds s 

for sufficiently large s; and hence 

-2^,«    2p, 
e s 

is an increasing function of s. We now write 

2a<t-s)   /S\2P 2ft),(»-»)   /s\2pi   r 

where 

2i o> It -s)   / s   \       2 

^,(5, t)+i^2(s, t)=e • \       ) ' 

and apply the second mean value theorem to (9), obtaining 

r t     2w,(i -s)   / s \    ' 
-K{x,t)=Jx    e     ' [-   )       [<j>,(s,t)+i<t>z(s,t)]ds 

\, t   / 

2coAt-x) / X  \ . ri rV 
= C       ' V —   ) U,   0,(8,0^5+1^    02(s,f)rfs] 

where as <  ^  77 < f. The integrals on the right-hand side are bounded 
functions of x and t, and 

lo>y(t-x)   ( *_\ 

•    ■>-«»- ^^.      . 
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when * > * > *0 and x0 is sufficiently large, so that 

(14)   \K{x, t)\<B,      t>x>x0 

for some x0 and ß. 
lfKU)\<Crkfort>x0, where A > — 1, then 

ARC 
(15)   \TCix)\<——x-X--\ x>x0, 

A +  1 

We have by (11), (7), and (14) 

ITCMhir  Kix, t) Fit) at) r2 dt\  < ABCj~rK-ldt, 

and this proves (15). 
For the functions defined by (12) we have 

(16)    l«„(«)|< T—*    ' xZ*o- 

Proof by induction. (16) is true for n = 0, and if it is true for any n, the 
definition of z ., combined with (15) shows that it is also true for re + L 

The series (13) converges uniformly for x > xot and the function z (ar) 
satisfies (10). Moreover, z {x) is twice continuously differentiable and 
satisfies (5). The uniform convergence follows from (16). If we substitute 
z = l.z in the integral in (10), term-by-term integration is justified by 
uniform convergence, and shows that (10) is satisfied. Furthermore, the 
integral  in  (10) is a differentiable function of x, and so is z (x). Since 

(fj- dx 

we obtain from (10), 

(17)  z ' (x) -/" e »a,£t-«) (J^\      F it) z it) r* dt. 

The last integral is again a differentiable function of x, and substitution 
shows that z (x) satisfies (5). With z given by (13), 
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(18) y}(x)=eu" x-^z{x) 

satisfies (1). If q0 is positive and q^ is real, we may take either of the 
two values of (—90) for to, and we thus obtain two linearly independent 
solutions of the form (18). In every other case, there is only one solution 
of this form, and a second solution may be written down in the form 

(19) y2U) = y)U)/6
, [y,^)]"2^, 

where b is any number large enough to ensure that y, (x) ■£ 0 for x > b. 
Since z {x) = 1 + 0 (x-1) as % -» t», such a b certainly exists. 

Thus  in  every   case   we  have  two  linearly  independent solutions  of 
(1) in the interval x > x0, and, if a < x  , these solutions can be extended 
to the interval x > a. Itremainsto show that the formal solutions obtained 
in  sec. 3.2 are asymptotic expansions of the solutions obtained in this 
section. 

3.4.   Asymptotic expansions of the solutions 
We first remark that 

(1) J00 e-'t^dt-^e''     S    (-!)"(»/)    arv~" as *-» oo 1 « = o " 

(2) f* eU^dt^e"     f    iv)   x~v~m as*-»«., 
b « = 0 " 

where 

(3) (v)0=l,    (v)r= v(i/+ 1)... (v + r- 1), r=l, 2, ... . 

Both results can be proved by successive integrations by parts, with 
g = t-1', h_m = (+ 1)" exp(+ t) in 2.1 (5). In particular. 

(4)    JOOe-trvdt = 0{e-Ix-v) as x -* oo 

(5)     j' eH^dt^Oie' x~v) asx-«.. 
D 

■^ *•■ 



70 ASYMPTOTIC EXPANSIONS 3.4 

Next   we   prove   by   induction   that the  functions   defined  by  3.3(12) 
possess asymptotic power series expansions of the form 

(6)     z   OO ~2c.a; as x -* oo. 
n i  kn «= n 

This is certainly true for re = 0. If it is true for any n, then 

.-* F (t) z  (;)~   1,   a.t~ as t-» oo. 
n , ft 

« = n 

Also 

<+.<*) = s~e2^*-*)ß YF{t) Zn(t) t-*dt. 

If cu and p are real,  the  last theorem  in sec.  1.4 justifies substitution 
of the asymptotic expansion of F (f) z   (f) in the integral, so that 

2P 
as x -» oo. (7)     2: + i(.)~ J^^^e^-^y  r^dt 

If cü or p is coirplex, (7) can be proved by taking the asymptotic expansion 
of Fit) z (t.) to a finite number of terms, with a remainder, substituting, 
and estimating the remainder in (7) by (4). In any event, each integral in 
(7) possesses an asymptotic powerseries expansion which can be obtained 
from (1), and starts with x~ ~z. By the third theorem in sec. 1.4, it is 
permissible to substitute this expansion in (7): fiin) = n, the uniformity of 
the asymptotic expansion is trivial, and the series 14(5) terminate so 
that the question of convergence does not arise. Thus we obtain by 
rearrangement 

(8)    <+,(*)--   2    bkx 
k= n 

-Jk-2. 

and by integration of (8) we obtain the asymptotic expansion of z +1, 
By the second theorem of see. 1.4, it is permissible to substitute (6) 

in 33(13): since z = 0{x~n), the question of uniformity is trivial, and 
the series 1.4(2) terminate so that the question of their convergence does 
not arise. Thus we see that z (x) possesses an asymptotic power series 
expansion of the form 

oo _ 
(9)     z(x)~    S    cnx~n as x-> oo. 

n= O 
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It remains to prove that the coefficients c occurring here satisfy 3.2(7). 
It follows from 3.3 (17) and the corresponding relation for z ", that z ' and 
2" also possess asymptotic power series expansions. By a result in 
sec. 1.6 it follows that (9) may be differentiated twice. The resulting 
asymptotic series must satisfy 3.3(5) formally, and this leads to 3.2(7) 
for the coefficients. Also, c   = 1. 

We have thus proved that 3.3(18) is represented asymptotically by 
one of the formal solutions, and we conclude by showing that 3.3(19) is 
represented by the other. To do this we put 

(10) y2U)=e-a"x^z2(r), 

and have from 3.3(18) and (19) 

(11) z 2 (x) = z (x) J6" e ,A'('-< > (^\   P  [z (Öl"2 dt. 

By the choice of 6, z (t) is bounded away from zero, and we have also 
seen that z (t) possesses an asymptotic expansion, (9) with c — 1, as 
t •* <*>. Then 

Ml)]"*- "fa   t-n+OU~N) {oTt>b 

for some a  , and 

z2(x)      ALT' 

The integral under the summation sign can be expanded asymptotically by 
(2), and the last integral is 0 (x ) by (5). Since ^V is an arbitrary positive 
integer, z2(x)/z(x) possesses an asymptotic power series. Hence z (x) 
possesses an asymptotic power series expansion 

(12) z2(x)~    1     Cnx"n asx-»o. 
n= 0 
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By a similar consideration as in the case of z „ it can be proved that 
the coefficients occurring here satisfy a recurrence relation which differs 
from 3.2(7) only in that a>, p are replaced by -co, -p. Thus, 3.3(19) is 
represented asymptotically by one of the formal solutions. 

If co and p are both imaginary, the two fundamental solutions, both of 
the form 3.3(18), are defined uniquely up to a constant factor: both are 
bounded and neither approaches zero as x -» oo. In all other cases, one of 
the fundamental solutions, 3,3(18), approaches zero as a: -» oo, and is 
defined uniquely up to a constant factor: the other, 3.3(19), is unbounded 
as x -► oo, and is not unique (since it depends on b). In fact, 

y, y ,(*) + y2 y2(«) ~ y2 y2 (x)        .as x-» oo y2 ^ 
0- 

3.5.   Complex variable. Stokes'phenomenon 

The results of the preceding sections may be extended to the case of 
a complex variable x ranging over a sectorial region 5, 

(1)     M > a, a < arg x < ß. 

It will be assumed that q (x) is analytic in 5, and that 3.3(2) holds, 
uniformly in arg x, as x -* oo in S. We then have two formal solutions 
3 3(3), where <u satisfies 3.2(5). 

The line Re[x(—^ ) ] = 0 is called the critical line or the Stokes line. 
If x -» oo along one of the rays of the critical line, the exponential factors 
in both formal solutions remain bounded, and bounded away from zero. 
If x-»oo along any otherray, the leadingterm in one of the formal solutions 
increases exponentially. 

First we assume that the critical line does not intersect S. Clearly, in 
this case ß — a < n, and we may take co as that solution of 3.2(5) for which 
Re <ux < 0 for all x in S. If x varies along any ray arg x = const, in S, 
the results of sections 3.3 and 3.4 hold, and these results can be extended 
to the sector S as follows. In the integral equation 3.3(10) we always 
integrate along a ray, so that arg x = arg t. The boundedness of the 
kernel then follows for each x in S, ard uniformly in x when a < arg x < ß. 
The integral equation can be solved as before, each ^n(*) can be shown 
to be analytic in S, and z (x) Is also analytic in S, since it is the uniform 
limit of analytic functions. In 3.3 (8), b is chosen so that y , (x) ^ 0 when 
1*1 i£ ^» a ^ arR x ^ ß' The result is the existence of two solutions, y, 
and y2,  in S which are represented asymptotically by multioles  of the 
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formal solutions 3.3 (3). The asymptotic expansions hold uniformly in 
arg x as ac -» oo, a < arg x < ß. Any solution of the differential equation 
is a linear combination of y 1 and y2; and its asymptotic expansion follows 
from the asymptotic expansions of y , and y2. 

Next we assume that the critical line intersects 5 and decomposes it 
into a finite number of sectors, S., i = 1, ... , K, and certain rays of the 
line itself. In each of the sectors S, we have a value co. oi co such that 
Re co, x <0 for all x in S., and in each S. we have a fundamental system 
y lfc , y^ which is asymptotically represented by the formal solutions. For 
a fuller discussion of these fundamental systems the reader is referred 
to Iloheisel (1924). It turns out that the fundamental system belonging to 
a ray of the critical line may be taken also as a fundamental system for 
the two sectors separated by that ray. Each of the two solutions is 
dominant (exponentially increasing) in one of the two sectors, and re- 
cessive (exponentially decreasing) in the other. 

Let us consider a solution, y (x), of the differential equation in S. In 
each of the sectors Sk, y is a linear combination of the two fundamental 
solutions for that sector; in each of the sectors y will b e represented 
asymptotically by a linear combination of the two formal solutions; but 
the coefficients may vary from sector to sector. This circumstance was 
discovered by Stokes, and it is called Stokes' phenomenon. The sectors 
S, are sometimes called Stokes sectors, and the critical rays. Stokes 
rays. 

For the determination of the coefficients involved in the expression 
of y (x) as a linear combination of the formal solutions see Turrittin 
(1950). 

3.6.  Bessei functions of order zero 

^e shall illustrate the results of the last few sections by a brief 
discussion of the differential equation 

(1) 2"   +X~,   Z'   +  2  -0 

satisfied by Bessei functions of order zero. The change of variable 

(2) z = x"54 y. 



74 ASYMPTOTIC EXPANSIONS 3.6 

transforms (1) to the standard form 

(3) *'* C1^)'-0- 
This equation is of the form 3.3(1), and in 3.5(1) we may take a = 0 and 
o, ß arbitrary. 

We obtain formal   solutions  aa in sec. 3.2; equations (5), (6), (7) of that 
section become 

<u2 + l = 0, p = 0, 2<y/icn= («-1/2)2 cn_1; 

and with the abbreviation 

(r-i/2)2    [r(n + i/2)]2 

(4) an= n 
2nnl 7T 

V=   1 

and appropriate choices of c0, we obtain two formal solutions 

(5) SAx) = i2/n)* e"-*"'*    1    a   (-i)n *'n~X 

n= 0 

(6) 5,U) = (2/»r)54 e-" + i77/4    1    a   inx-n-* 

of (1). Between the formal series (5) and (6) the identities 

(7) S1(xe7ri)==-S2U),      S|(xe-7ri) = 52(x) 

S.Ue^-S.U), S2Ue"7ri) = -S,(x) 

hold. 
Since <u = ± i, the critical line is the real x axis, and according to 

the theory outlined in the preceding section, every solution of (1) is re- 
presented asymptotically by a linear combination of S, and S in any 
sector which is entirely in the upper (or lower) half-plane. As the real 
axis is crossed, the coefficients may change. We shall see that such 
changes actually occur. 

It can be verified by substitution that (1) is satisfied by the Bessel 
function of the first kind of order zero 
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<8)   J'M-.l   T^-^* 
■ = 0 

which is an even entire function of x. Poisson's integral representation 

(9) Jft0^ = -/'   eixu(l-u2r* rfu 
0 77-1 

may be verified by expanding the exponential function and integrating 
term-by-tcrm. 

Let us assume for the moment that Re x > 0. Then e"" vanishes 
exponentially as Im u -* + ■», and we may break up the integral in (9) 
according to 

X' p 1 + ioo        p—1+ioo 

-,  = -/, +J-,        ' 
In the first integral we put 

u <= 1 + it,      I - u = te~irr/z, 1 + u = 2 + it, 

and in the second, 

zi = -l+it, l-u=2-it, l + u = tei'n/2, 

thus obtaining two functions which are constant multiples of 

(10) //«" (x)=— eix-i7r/4 J°° e-xt r'A {2+it)-* dt 
n o 

//•2)U)=- e-"+i77/4jrooe-"f-^ {2-U)-'A dt. 
n o 

The functions defined by (10) are known as Bessel functions of the third 
kind, or Hankel functions, of order zero. These functions are defined by 
(10) for Re at > 0, but their domains of definition can be extended to 

— 7T < arg x < 2n in the case of A/*", and to —277 < arg x < 77 in the case 
of H^\ by rotating the path of integration as in sec. 2.2. 

It can be shown that H^ and Hl
0
2) are also solutions of (1). Clearly 

(11) J0M-~Hl>"M + ~H™(*), 
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and a closer investigation reveals that both //'" and //'2' have logarithmic 
singularities at the origin. The knowledge of these singularities leads to 
a definition of the Hankel functions for all values of arg *. 

The integrals representing Hankel functions are Laplace integrals, 
and their asymptotic expansions for large x may be obtained by means of 
the last theorem in sec. 2.2, the result being 

(12) HQHX) ~ S, (x), uniformly in arg x,      aa x -» oo, 
- TT- + f < arg x < 2n — e,      e>0 

(13) //Q2' (%) ~ S2 (X), uniformly in arg x,     as x -» oo, 
— 2 77 + e < arg x <n — f,      f > 0. 

From (11) we then have 

(14) 2J0(x) ^ S jix) + S 2{x),      uniformly in arg x,      as x-» oo, 
—IT + e < arg x < TT — f,       e > 0. 

In the last equation we have used the-symbol ~ in a somewhat unusual 
manner, in that the right-hand side is not one asymptotic expansion but 
the sum of two. A justificiation of this use is based on the circumstance 
that on the real axis the two expansions are of the same o^der and may 

be combined into a single expansion (which then is not an asymptotic 
power series), while in the upper [lower] half-plane 5, (x) [S2(x)] is re- 
cessive and may be omitted. 

Vie have thus obtained the asymptotic expansion of J0 (x) in the whole 
plane with the exception of a narrow sector around the negative real 
axis. To obtain asymptotic expansions valid in sectors including the 
negative real axis, ws remark that it follows from (8) and (14) that 

2c/0(x)=2J0(xe
Tri)~S,(xe!7i) + S2(xe

7ri) 

as x -» oo and — TT + f < arg(xe7T') < rr — e, so that 

(15) 2c70 («) ~ S ! (x) — S2 (x), uniformly in arg x, as x -» oo, 
— 2n+ ( < arg x <— e 

by (7); and similarly J0{x) = «^(xe-™) and 

(16) 2J0(x) ~ - S , (x) + S2 (x), uniformly in arg x, as x-» oo, 
e < arg x <2TT — (. 
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A con parison of (14), (15), and (16) shows the Stokes' phenomenon. 
The rays excluded by narrow sectors are the Stokes rays. At first it may 
seem strange that the sectors of validity of these asymptotic expansions 
overlap, but there is no contradiction involved in this. The regions of 
validity-of (14) and (15) have the common part ~TT + e < arg x <—€; in 
this common part S2 (x) is recessive so that the right-hand sides of (14) 
and (15) are asymptotically equal. Thus, the coefficients of the formal 
series jump in sectors where these series are dominated by the other 
series. 
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CHAPTER IV 

DIFFERENTIAL EQUATIONS WITH A LARGE PARAMETER 

In this chapter we describe briefly the asyrrptotic theory of ordinary 
horrogeneous linear differential equations of the second order containing 
a large pararreter. For this theory and its extensions to equations of 
higher orders, and to systems of differential equations of the first order, 
see Ince (1927, p. 27011.), Kan ke (1944, p. 62 IT., 10211., 137 ff., 213 ff.), 
Wasow (1953), the references given in these works, and the references 
given at the end of this chapter. 

As in sec. 3.2, we may transform the differential equation to standard 
form 

y" + q(x, A)y = 0, 

where x is a real or complex variable, and A is a real or complex pa- 
rameter. We shall investigate the behavior of the solutions of this differ- 
ential equation as A-► A0, and without loss of generality we take A = <». 

The reader will be expected to be familiar with the basic theorems 
regarding the dependence of solutions of a differential equation on 
parameters occurring in the equation (see, for instance, Kamke, 1930, 
sec. 17, sec. 8). 

4.1.  Liouville 's problem 

In the course of his classical investigations of the Sturm-Liouville 
problem, Liouville discussed the behavior of solutions of the differential 
equation 

(1)     y" +[A2p(«)+rOc)]y =0 

as A -» oo. Here x is a real variable, o < x < b, p (x) is positive and twice 
continuously differentiable, and r(x) is continuous, for a < x < b. Liou- 
ville's procedure may be summarized as follows. 

78 
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New variables, ^ and t], are introduced by the substitution 

(2) ^=/[PU)]Krfx. ij-LpUflV. 

which carries the interval a < x < b into a < £ < ß, and the differential 
equation (1) into 

(3) 4p  +*2ri~p(£H 

where 

i £ __liL'2 

4  p 2   ~ 16   p: (4)    P(^)=T^   -^  .s 

is a continuous function of ^ a < f < /S. (p ' «= dp/dx, etc.) 
By a method similar to that employed in sec. 3.3 it can now be shown 

that solutions of (3) satisfy the Volterra integral equation 

(5) T7(^)= c, cos A^+c2 sin A^+A"'/y    Bin H£~ t) p(t) TJ{t) dt, 

where a < y < ß and c^, c2 are arbitrary. *}{£) and c^ cos A^+ c2 sin A^ 
have the same value, and the samri derivative, at ^= y. 

The solution of (5) can be obtained by successive approximations in 
the form 

(6) T;(f, A)=    2    T7n(^. A), 
n= 0 

where 

770(^, A) = c, cosA^+ c2 sinA^ 

T?n+1 U, A) = A"1 / f sinAC^- 0 pit) rinU, k) dt n = 0, 1, ... . 

If |p(^)| < ^, it is easy to prove by induction that 

l7?,,^. A)| <  ; —  n = 1, 2, 



80 ASYMPTOTIC EXPANSIONS 4.1 

^nd in the case of a finite interval (a, ß) it follows that (6) is uniformly 
convergent for a < £ < ß, A > A^ 0, and is also an asymptotic expansion 
ot TJ{£. A) as A -► oo. 

The T] are very difficult to compute. Other approximations for large A 
may be obtained from formal solutions (which are divergent in general). 
There are two methods. Cne uses formal expansions 

2    a   (x) A"" cosA^+    f    ß   (x)A~nsinA^ 
n =   0      " „= 0        n 

fory(x. A), while the other uses formal expansions 

»A^+    1    y  (x)A~n 

n= 0 

for log y (x. A). In the second method, y is a solution without zeros. In 
either method an approximation to y. is constructed by taking a partial 
sum of the formal expansion; and this approxin'ation is compared with y 
by means of an integral equation. Either of these two methods reduces to 
Liouville's process if the partial sum in question consists of one term. 

4.2. Formal solutions 

Instead of 4.1 (1), we shall discuss the slightly more general differ- 
ential equation 

(1)     y" +q{x, A)y = 0. 

If <7(x. A) is a formal power series In A ' »vith coefficients which depend 
on x, then two linearly independent solutions of (1) may also be repre- 
sented by formal power series in A . Cn the other hand, if the formal 
expansion of q in powers of A contains positive powers of A, then the 
formal expansion of y will be a Laurent series. Nevertheless, we shall 
see that in the case that q{x. A), as a function of A, has a pole at A = oo, 
we can construct formal solutions which are analogous to the normal and 
subnormal solutions of sec. 3.2. 

In (1), we shall assume that q (x. A) is of the form 

(2)       2   qHix)k 
n= 0 

2k-n 
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where the q   ix) are independent of A, and A: is a positive integer. We shall 
also   assume   that  q   (x)   does   not  vanish   in   the   interval   (or  simply- 
connected region in the complex plane) over which x varies. 

Corresponding to the two methods mentioned at the end of sec. 4.1, 
we shall obtain two kinds of formal solutions of (1). The first one of 
these is of the form 

(3) 2   a  (x)A"nexp[*i1   ß   UU*"l/]. 
n= 0     " i/= 0 

In substituting (3) in (1), we use the convention qn = Q, an = 0 for 
n = -1, -2,-3, ... ,  and ßv= 0 for i/ = -1, -2, ... and also for v = fe, 
rC   -V-     A,    ...    . 

All summations may then be extended over all integers, and we obtain 

[1 ß" \k'v + C /3 '  A*-*)2] 2 a   A-" + 2 S /3 ' A*-" 2 a' A-" 

+ 2 a" A"n + 2 ?    A2*"" 2 a   A~n = 0. 
n * n n 

Picking out the coefficient of A    ~n 

(4) 2  an_B(gii+2ß^:.v)+2an.-ß:'.Jk 
■ V ■ 

+ 22 a'       ß'    4 + a"_2t = 0 n —■   r'm—k n — 2k 
m 

for all integer values of n. 
The first non-vacuous condition arises when TI = 0. If we set n = 0, 1, 

... , A — 1 in (4) we obtain 

9B +2/3;/3;.J/ = 0 m = 0, 1, ... ,A-1 
V 

or 

(5) /S'0
2+90 = 0 

(6)  2/3;/s; + 9ii + "i'  /3;/3:.v=o m = i,... ,A-I. 

In consequence of these relations, we may restrict summation to m > A; in 
the first sum in (4). For n = A in (4) we have 

(7)     2a; ß'o+a0{ßl+qk+   J^ ßj  /B;_v) = 0, 
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and when we replace n by k + n in (4), 

(8)     2a'nß' + aniß; + qk+
ki^ßiß'k_v) 

+    S   an.,(ß:+,i+. +     "S      ßlß'k+m.v) 
m~  1 U= m +1 

n 
+ 2    2    a'       ß' + a"   . =0 re= 1, 2, ... 

We thus see that (3) satisfies (1) formally, provided that the a and 
the ß satisfy (5) to (8). In these equations, empty sums (i.e., sums 
whose upper limit of summation is less than the lower limit) are inter- 
preted as zero. Since q £ 0, we may choose a branch of [—90(«)] , and 
then (5) determines /30 up to an additive constant. Moreover, ß' ■£ 0, 
and hence (6) determines /3., ... , ß.., recurrently, up to an additive 
constant in each. (7) determines a0 up to a constant factor, and (8) 
determines a,, a , ... recurrently, up to an additive constant multiple of 
aQ in each. Corresponding to the two branches of (—?0^ , we obtain two 
formal solutions of the form (3). 

A second type of formal solution is 

(9) exp[  I    /3nU)Afc-"l. 
n= 0 

Substituting (9) in (1) we obtain 

2 ß"n A*"" + (2 ß'n X*"")2 + 2 9n A2*"" = 0, 

and comparing coefficients of A    "", 

(10) ^2 + ?0 = 0 

(11) 2/3^/3; + <7„+n2,/Sl/S^^O „ = !,...,A;-! 

(12)  2ß^ß>?n+
n2, ß'Mß'n-m+ßH

n-k = 0 n-fc. & + !,... 

There are two linearly independent formal solutions of this type. 
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The connection between these two types of formal solutions is fairly 
obvious. Equations (10) and (11) are identical with (5) and (6), and 
2 a   A~" is the formal expansion of 

exp( 1    /3nA*-B). 
n» k 

Throughout this discussion we have assumed that q{x. A), as a func- 
tion of A, has a pole of even order at A = oo. If the pole is of odd order, 
then no solution of the form (3) or (9) exists, and instead of powers of 
A we must expand in powers of A   . 

4 3.  Asymptotic solution» 
We shall now show that under certain assumptions, the differential 

equation 4.2(1) possesses a fundamental system of solutions which are 
represented asymptotically by the formal solutions obtained in the pre- 
ceding Section. It does not matter whether we compare solutions of 
4.2(1) with 

"f'   a Ax) \-* exp[ *i' ß   (*) Xk-Vl 
n=0 v= 0 

where the a   and ß    satisfy 4.2(5) to (8), or with 

expl^F'  ß   (x)A*-n], 
n =  0 

where the ß   satisfy 4.2(10) to (12), for the a's and ß's can be so chosen 
that the ratio of these two expressions is 1 + CKA-"). 

We fix a positive integer A', and set 

(1)     y.(x)=exp[      1        /S   .(x)A*-n] 7=1,2, 

where /S01 = — /S^ , and for each /, the ß . satisfy 4.2 (10) to (12). These 
coefficients are completely determined by q0, ... , 92t+w_i» an^ certain 
derivatives of these functions, and we shall say that the q are suffi- 
ciently often differentiable if all the derivatives entering the determin- 
ation of the ß . , n = 0, ... , 2fe + /V - 1, ex:8t and are continuous 
functions of x. We let x vary over a bounded and closed interval X 
a < x < b, and A, over a sectorial domain S: |A| > A,, <£0 < arg A< <£,. 
The theorem to be proved is as follows. 
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// for each fixed A in 5, q(x. A) is a continuous function of x over I; if 

(2)    g(», A) = ^*+5:", qn{x) A2*-" + 0{X.-N ), 

uniformly in x and arg A, as A -► <» i« S, where the q   (x) are sufficiently 
often differentiable in I, and 

(3) Re\kk[~qoM]*\^0 

when A is in S and x in I, then the differential- equation 

(4) y" +q{x, A)y =0 

possesses a fundamental system of solutions, y ,(«) and y Ax), so that 

(5) yj{x) = Y.{x)[l + 0{k-N)], 

y'j{x)=Y}'(x)[l + CHX-N)], 

uniformly in x and arg A, as A -» oo tn S. 
Vie shall prove this theorem by a method analogous to that used in 

sec. 3.3. Dy (3) and 4.2(10) we may choose /30I and ß02 so that for 
each A in 5, Re [A /301 (*)] is an increasing, and Re [A /302(x)j a 
decreasing, function of*. It then follows from (1) that for each sufficiently 
large A in S, |y, (x)| is an increasing, and |y20c)| a decreasing, function 
of x. 

To establish the existence and the asymptotic property of yjOc), we 
substitute 

(6) ?,(*)= y,(*)*(*) 

in (4) and obtain 

y 
(7) z" +2 —L z' +F(x, A) 2 = 0, 

^ i 

where 

(8) FU, A) = —!+<?=      i     /3>*-n + (     i     /S;, A*-n)2 + 9 = 0(A-'¥) 
y, n=0 n=0 
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uniformly in x and arg A, as A-»e» in 5, by (2) and 4.2(10} to (12). Equa- 
tion (7) may be written as 

[y'wr] d   ., .        az    . +yZ(x)F(XtA)2=o, 
dx 

and  by two successive  integrations, and a suitable choice of the con- 
stants of integration, we obtain 

(9)     z U) = 1 - J xK{x, t) Fit, A) z it)dt, 
a 

where 

K{x,t) = St
XY*{t)Y-,Hs)ds. 

Since ly^x)! is an increasing function, we have ly^f)] < jy^s)], and 

\K{x, t)\ <{b- a) a<t<x<b. 

The existence of z (x) now follows from the general theory of Volterra 
integral equations, or can be established by successive approximations. 
From (8) and (9), z (at) =1+0 (A~w), uniformly in * and arg A, as A -» t» 
in 5. Moreover, z (x) is differentiable, 

z '(*) = -/' y f (t) y72 (*) F (t, A) z it) dt~o (A-*), 

and 
r       v (r\ 

= Y\{x)[\ + 0{X-N)l ;(*)=y;u)    | y.U) 
Z (it) H •   Z ' (x) 

y;u) 
This proves (5) for / = 1. The proof for / = 2 is similar, except that b, 

rather than a, must be chosen as the fixed limit of integration in the 
integral equation. 

4.4.   Application to Bessel functions 

We shall now apply the methods of the last two sections to prove the 
asymptotic formulas* 

(1) c\(A sech /3) ~ (2 w A tanh ß)~% exp (A tanh ß-Xß)     as     A-« 

(2) //{'-^(Asec j8)->/_,, A tan ßj    exp[±i(Atan/3-A/3-rr/4)]   as A^ «. 

Tlir symbol /3 uaed in these fonnulss must not be confused with the function ß{*) to be 
used below. 
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Equation (1) holds for ß > 0, uniformly in^ ifO </31 < ß <ß2< "<: 
Equation (2) holds f or 0 < /3 < TT/2, uniformly in/8ifO<e</S< rr/2 - e; 
and in this equation (and similarly later in (18)) the upper sign holds for 
Hj^ , the lower sign for //j^2'. Both results may be derived from integral 
representations of Bessel functions by means of the method of steepest 
descents (Watson, 1922, sec. 8.4, 8.41). 

The functions 

x* JkiXx),      xy' yAU*),      x* H^i^xX      x* HgWx) 

/    are solutions of the differential equation 

(3) y" +[A2-(A2-!O%-z]y-0. 

This equation is of the form 4.3 (4) with 

i = l,      <70(x)=l-;c-2,      ?a0e)-(2xr8, 

all the other q (a:) vanishing identically. The points x = 0, «> are singular 
points of (3),, and x = 1 is a so-called transition point at which the con- 
dition 4.3(3) is violated for any value of A, On any interval a < x < b 
which does not include any singularity or transition point, the theorem of 
sec, 4.3 will yield the general form of the asymptotic solutions but it will 
fail to indicate the expression of y, and y2 in terms of the standard 
Bessel functions. In order to identify our solutions in terms of Bessel 
functions, we shall extend the interval to one of the singular points of 
(3). Since this case is not covered by the thsorem of sec. 4.3, we shall 
use the methods rather than the results of the preceding sections. 

Let us first discuss (3) on the interval 0<ar<6 < I. From 4.2(5) we 
have 

/S>)=±0c-2-l)x, 

and hence 

(4) ±ßAx) ~ß{x)~f  (*-* - I)« dx = (1 - x2)x + log —-^ « . 
L+ (1 — x ) 

From 4.2(7), 

2a'0 ß^aoß*~0. 



4.4 DIFFERENTIAL EQUATIONS WITH A LARGE PARAMETER 87 

so that 

(5) ao0c)-[/3'(*)rx-a(x) -^(l-x2)'*. 

With a and ß so defined we form the functions 

(6) y.OO-aOOc^    y2(x) = a(x)c-M(.)f 

which correspond to the leading terms of the formal solutions. 
The integral equation for z = y A/Y ^ is 

(7) z (x) = 1 - /o' K (x, t) F (t, X)z(t) dt. 

By a straightforward computation we find 

(8) FCx.A^-^ + A2 (%-4-V^--^ °    4 + y'      . 
• y, \        x2   /      4x2       4(l-x2)2 

so that F is bounded on the interval. Moreover, a~2 " ß'   from (5), and 

(9) KU, t)=    /| ^L        expl2A[i8(f)-/3(s)]j rfs 

a2(0 
= ——   (l-expl2A[/S(«)-/3(x)]n. 

*- A 

Now, /S (x) is an increasing function of x, ß{t)—ß{x)<0 for 0<f£x<i<l, 
and the exponential function will be bounded if Re A > 0. Also a2 (t) is 
bounded. We thus arrive at the estimate 

(10) \F{t, k)K{x,t)\< ~ 

for ReA>0, 0<f<x<t<l. Here C is independent of A, x,' t. 
We   are now ready to solve the integral equation (7) by successive 

approximations in the form 

z0(x)=l 

zn+1(x)= Jx/C(x, 0F0, k)zn{t)dt n=0, 1, ... 
0 

oo 
2(X)= S       2(X\ 

n *= 0 
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From (10) it is easy to prove by induction that 

1    /   Cx\n 

so   that   the   series   defining z   converges  uniformly  in x  and  A  if A is 
bounded   away from  zero; z (x) satisfies the  integral  equation,  is twice 
continuously differentiable, satisfies the appropriate differential equation, 
and 

{x)= l + O (0- 
This establishes the existence of the solution y,  of (3) which has the 
property 

■W[1+0(T)]- (11) y|(x)= y.U)   1 + 0 I —    J   , 0<r<6<l,      ReA^O. 

It remains to show that this solution is a multiple of c7\(Ax). 
Since y j is a solution of (3), 

(12) x"x y, (*) - c , W J)SXx) + c
2^) Yk{Kx). 

Now, fix A, and let x -» 0. It is well known (Watson, 1922, p. 40, p. 64) 
that 

T/     x     (Ax/2)X 

J\(\x) ~  as x -* 0 
k        r(A+i) 

(Ax/2)^                   (Ax/2)"A 

y\(Ax)~    cot A77 cosec An- as     x-► 0, k        r(A+i) rd-A) 

and it follows from (11), (6), (5), and (4) that * 

x'* y,(x)~x-M yi(x)~e^(l)~(x/2)AeA as x ^ 0. 

Making x -» 0 in (12), we see that 

c1(A) = eAA"Ar(A+1), c2(A)=0, 

*   Note that  V     is the approximate solution,   Y\ a Bessel function of the second kind. 
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and by Stirling's formula. 

)(A)=(2^A)X       l + o(—j    . 

We thus find that 

[■•"(f)] 

when 0 < a: < 6 < 1 and Re A > 0. If we put x = sech ß and take A positive 
in the latter form, we obtain (1). 

Let us now turn to the discussion of (3) on the interval 1 < a < a; < oo. 
In this case 

04)  a(x) = x*ix2- I)"* = [ - i/S' (*)]"* 

/3U)=i J(l-*-2)x dx = i{x2- iyA -i cos-' x-\ 

where cos     denotes the principal value of the inverse cosine,in particular 
cos-    *"    -» 7T/2 as X -> OO.  The comparison functions are  again of the 
form (6), with a and ß defined in (14). The integral equation for z = y ,/Y ^ 
is 

(15)   z (*) -l + J^K {x, t) F it. A) z {t) dl. 

Equation (8) holds, and shows that Fit, A) = 0{t~2) tor t > b > 1 and all 
A. Since a = — /S' in this case, the evaluation of the integral in (9) 
leads to 

K(x, t) = ~^- a-exp\2\[ßU)-ß{x)]l ). 
tu A 

Now, —iß is an increasing function of x, and t >x, so that the exponential 
function will be bounded if Im A > 0. Also a   {t) is bounded, and we have 
the estimate 
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(16)  \F{t,k)K(x,t)\ < 
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C 

4.4 

|A|«' 

for ImA>0, l<a<x<t, C being independent of A, x, t. 
We now set 

*„(*)= 1 

z n +, (x) = JJ" /C {x, t) F it. A) z n it) dt n - 0, 1, ... 

2(x)=    S    zixX 
n=0       " 

From (16) it is easy to prove by induction that 

n\\\X\xJ     ' 

so that the series defining z converges uniformly if X is bounded away 
from zero; z (x) satisfies the integral equation, is twice continuously 
differentiable, satisfies the appropriate differential equation, and 

This establishes the existence of a solution y    of (3) which has the 
property 

(17) y1(x) = y|(x) 1 + "(F)] 1 < a < x < «.,      Im X > 0. 

It remains to show that this solution is a multiple of //^"(Xx), 
Since y! is a solution of (3), 

(18) x-M y, (x) = c , (X) ^'(Xx) + c2(X) //^(Xx). 

Let us fix X and make x -» oo. It is well known (Watson, 1922, sec, 7.2) 
that for 0 < arg \<n 

n-"^- (~J "p [*' (J-T-r)] as 
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and it follows from (17) and (14) that 

y,(x)~ yi(x)~exp[A/3(*)3~expUAx-tAV2]     as      x - «,. 

Making x -» ao in (18) we see that 

c , (A) = (1/2WA)X e <7r/4, c 2(A) = 0. 

If arg A= w, we must use a slightly different asymptotic formula for H^, 
but the conclusion remains the same. We thus have 

(19) tf j^(Ax) = (l/2ff Ax)"* e-i7T/A y , (x)    \l + 0 (~^-) 

where 1 < a < x < oo and 1m A > 0. By a similar proof 

(20) ffJ2>U*)- (V2ffAxr* c i7p'4 YA* w[1 + 0(^)] 
when 1 < a < x < oo and Im A < 0. If we take A positive and put x = sec ß, 
we obtain (2)> 

4.5. Transition points 
Let us consider again Liouvillc's differential equation 

(1) y" +tA2p(x) + r(x)]y = 0 

with large positive A. As in sec. 4.1, x is a real variable, a < x < b, p{x) 
is real and twice continuously differentiable, and r (x) is continuous, for 
a < x < b. Instead of assuming p (x) to be positive, we now assume that 
p (x) has a zero in (a, b), A zero of p (x) will be called a transition point 
of the differential equation (1). For the sake of definiteness, we assume 
that p (x) has a simple zero at x = c, and no other zero in a < x < fe, and 
also that p' (c) > 0, so that p (x) < 0 when a < x < c, and p (x) > 0 when 
c <x < !>. 

We have seen that in the interval c + f<x<6, c>0, where p (x) is 
positive, solutions of (1) are asymptotically of the form 

(2) ^IpCx)]"* coslA J [p(x)lK dx\ + c2[P(x)r'< sinUj[p(x)]X dx\. 
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an^ it can be shown similarly that in the interval a < x < c — e, where p (*) 
is negative, solutions of (1) are asymptotically of the form 

(3)     c3[-p{x)r* expU/[-p(x)]* dx\ 4 ct[-p{x)r*exp\-\f[-p{x)]*dx\. 

The validity of these asymptotic forms depends on the fact that p (^) in 
4.1(4) is a bounded function, and hence it is clear that neither of the 
asymptotic forms can be valid at * = c. To the right of x = c, (2) shows 
that every solution of (1) has an oscillatory character; and to the left 
of « = c, (3) shovs that every solution of (2) has a monotonic character. 
In the immediate vicinity of x = c, the transition takes place from one 
type of behavior to the other. 

In this situation two problems arise. The first of these is the problem 
of finding the connection between the constants c, and c on the one 
hand, and the constants c3 and c4 on the other hand, if (2) and (3) re- 
present asymptotically the same solution of (1) in different intervals; and 
the second problem is the determination of the asymptotic form of the 
solutions of (1) in the interval (c — e, c + c). 

There are in essence two ingenious methods for solving the first 
problem. The first of these methods was used by Jeffreys in 1923, and re- 
discovered by Kramers a few years later. It is based on the remark that 
sufficiently near to x = c, p (x) may be approximated by the linear function 
(x — c) p' (c), and r(x) may be neglected. The resulting differential 
equation can then be solved in terms of Bessel functions of order ± 1/3. 
A comparison of the asymptotic forms of Bessel functions with (2) and 
(3) leads to the desired connection formulas between c, and c2 on the 
one hand, and c and c on the other hand. The second method was 
developed by Zwaan in 1929, and it avoids the transition point altogether. 
fx p (x) and r(x) are analytic functions of x, the differential equation is 
integrated along a path in the complex plane which consists of the real 
intervals (a, c — e) and (c + e, b), and of a semi-circle in the complex 
plane joining c — ( and c + e. Along this path, p of 4.1 (4) is bounded and 
Liouville's method (or a variant of it) can be applied. This method leads 
to the same connection formulas as the first one. Both methods can be 
extended to cases when p (x) has a zero of an arbitrary order. They are 
known as the WKB method, or sometimes also the WKBJ method. For a 
fuller description see.for instance, Morse and Feshbach (1953, p.l092ff.). 
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The second problem, the determination of asymptotic forms of the 
solutions of (1) in the interval (c - (, c + eX is much more difficult. 
There seems to be no simple elementary function which describes the 
transition from monotonic to oscillatory behavior, and it s^ems plausible 
that the asymptotic forms will involve some higher transcendental function. 
Now, the simplest differential equation of the form (1) and having a 
transition point is the equation 

d2Y 
(4) —4+A2xy=0; 

ax 

the solutions of this equation are fairly well known, and it seems tempt- 
ing to seek asymptotic forms of the solutions of (1) in terms of solutions 
of (4). Liouville's transformation 4.1(2) transforms 4.1(1) into a differ- 
ential equation with approximately constant coefficients, and similarly, 
we can find a transformation 

(5) £=<t>{x), rft/t(x)y 

which transforms (1) into an equation approximately of the form (4). The 
transformation (5) carries (1) into 

d'r) 1    /<j>" ^L\   ijL       f  A2p +r      0    d* I/J"1 1 

dC +07\^'"~2~y "JJ + [   t'2*^71   dx* y=0' 

In order to reduce this differential equation approximately to the form 
(4), we first determine ifj so that 

q> ill ,, . 
(6) ^7  -2-^-=0, 0 = ?'^, 

and then <f) so that 

(7) -~Tz-4>* W2 = p. 

With <^) and 0 so determined, the differential equation becomes 

dZT, 
(8) T7T +Aafi7-p(^H 
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where 

1   c6"'      3   0 
(9)    PiO = - 

ii 2 

2   <f>'3     4  0'4       4>'z 

Under the assumptions on p and r made at the beginning of this 
section, there is a unique three times continuously differentiable real 
function <£ which satisfies (7). For this function, <p' is bounded away 
from zero, p{£) is : bounded function, and we shall expect that the 
asymptotic form of the solutions of (8) is 

(10) c.H^O + c^^X 

where //, {x) and Hz (x) are two linearly independent solutions of (4). 
This generalization of Liouville's method was originally developed 

for the purpose of obtaining asymptotic forms of the solutions of (1) in 
the interval {c — t, c + e\ but it is clear that it can be extended to the 
entire interval (a, b). The extension enables us to dispense with three 
different asymptotic forms in (a, c — e\ {c — et c + e), (c + e, b) respec- 
tively, and yields a single uniform asymptotic representation of the 
solutions of (1) in a < x < b. The method was originated by Langer, who 
developed it in a number of memoirs of which a few are listed at the end 
of this chapter. Among those who developed further Langer's method we 
mention in particular Cherry. A survey of the literature regarding this 
method is available. (See reference at the end of this chapter.) 

Before describing this method in greater detail we shall list briefly 
some properties of the solutions of (4). 

4.6.  Airy functions 

The differential equation 

dzw 
(1) -—-r-z«;=0 

dz 

can be reduced to the differential equation satisfied by Bessel functions 
of order 1/3 (Watson, 1522, sec. 6.4). We shall use the notation 

(2) C'-z3^, (U=e27ri/a. 
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Two   linearly   independent   solutions   of   (1)   are   the   so-called   Airy 
functions of the first and second kind. 

(i)' (3) Ai(z)=-z*[i.U3io-iU3uy]~-[- ] KU3io 

&J 
and by direct computation 

(4)     Aiiz) Bi' (z) - Ai'(z) Bi(z) = TT"
1
 . 

We also have 

(5) AH-Z)- j^y.^io+j^uy] 

For real x, the integral representations 

//t3 \ 
cos (  —   + xt   ] dt 

Biix) = jr"'   / I exp ( + xt j   + sin (  + xt J     \   dt 

o 

hold, and these integrals may be converted into contour integrals which 
remain valid when x becomes complex. 

Ai{z) and Bi Cz) are both entire functions of z: they are real for real z. 
Ai (z) has a string of zeros on the negative real axis, and it has no zeros 
elsewhere (Watson, 1922, sec. 15.7). For any integer m, w {z) — Ai{oj*z) 
is also a solution of (1). By direct computation, 

1 n{m—h) 
(7)     w    {z)wAz)-w   (z)u;.(z) =    sin  exp 

* " * TTV/S 3 R-^4)] 
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and hence it is seen that tv     and w   +1  are linearly independent. Cn the 
other  hand,  any  three of the w     are  linearly dependent,  in particular, 

(8) tvaiz)+ü)wm+iiz)+to1 wm+3,{z) = 0. 

Also 

(9) ßi(z)= i[cü2 Aiico2 Z)-CJ AUCJZ)]. 

Ihe power series expansions of Ai{z) and Bii*) follow from (3). In 
particular 

(10) 3^ Ai(0)~3x"BiiÖ)m 

-3,/3/li'(0) = 3~,/6ßi'(0) 

r(2/3) 

1 

r(i/3) 

The asymptotic behavior of Ai (z) has been investigated in sec. 2.6 
for — TT/S < arg z < n/3. The analysis can be extended by rotating the 
path of integration in the «-plane of 2.6(3)« 

(11)   4i(z)=i *-**-* e-S [1 + 0(£-')] 

as      z -* oo, —7T < arg z < n. 

Results valid in sectors containing the negative real axis may be obtained 
by using (8). 

(12)  Aiiz) = ~ TT* z-Xle-Stl + OOT'tt + ^tl + W')!* 

as      z -» oo, »7/3 < arg z < 5 rr/S 

/li(r)-~ n'* z'* \e-t [1 + OCC"')! - «> S tl + 0(031 
2 

as      z -► 00, —5 JT/3 < arg z < — n/3. 
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From (9), 

(13) £,(*)=*-* »"* e« [1 + OC^-')] 

as      z -♦ oo, - 77/3 < arg z < rr/3. 

All   these   asymptotic  representations  hold uniformly  in   arg z   if 2   is 
restricted to a closed sector inside the open sector stated above. 

It follows from the asymptotic formulas that the functions 

(14) (1 + |z|*) e5 41(2) -77<arg2<ff 

(15) {1+ \z\*)e~t' Biiz) -»r/3 <arg2 <ff/3 

are bounded functions of 2. The reciprocals of these functions are also 
bounded provided that the zeros of the first function are suitably ex- 
cluded, for instance, if —n + f < arg z < IT — (, f > 0, in (14): the second 
function has no ^eros. 

For further information on Airy functions, and for numerical tables of 
these functions, see Miller (1946). 

We conclude this section by proving the following inequality. If w (z) 
is that solution of (1) which satisfies w{t)= 0, w' it) = 1, then 

2(xt)iiwix) 
(16) 0 <   -17      T^    < 1 

for 
2 2 

x>0,      t>0,      £~ — x*/2>0, T=—t3/2>ü. 
s    3 3 

The proof depends on a comparison theorem of Sturm's type. 

v (*) = —      w  
2{xtY 

satisfies the differential equation 

<17'""-('+^)"-0- 
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and  the same  initial  conditions  at t as w. From (1) and (17) it follows 
that both v (x) and w (x) are ^ 0 if x > 0, t > 0, x j^ t. Consider the function 
fix) = wixVvix), x ^ t. Clearly, fix) ■* l'aä x -» t, so we put/(f) = 1. 
Also, v and w have the same sign when x £ t. 

d it „^vw 

  iw   v — wv   ) = M; ' v — wv " =    < 0 
dx Vox 

and w   v — wv 'is a decreasing function oix. Since this function vanishes 
at x = t, it follows that /' ix) < 0 if x > t, and f ix) > 0 when 0 < x < t. 
Ihus, f ix) has a maximum at x = t, and 0 < fix) < 1 for 0 < x, t < o», 

4.7.  Asymptotic solutions valid in the transition region 

We assume that {a, b) is a bounded interval, a < c < b, p ix) is real and 
and twice continuously differentiable for a <x < b, pix) < 0 for a < a; < c, 
pix) > 0 for c < x < b, pic) = 0, p '(c) ^ 0, rix. A) is a bounded function 
of x and A when a £ x < b and A varies over a sectorial domain 5: (A| > A,, 
<£0 < arg A < 0, and for each fixed A in 5, r(ar. A) is a continuous function 
of a; for a < x < b. We then consider the differential equation 

(1) y" +[A2p0O + r0t, A)]y = 0, 

and introduce 00c) as the (unique) continuously differentiable real solu- 
tion of 4.5(7), i.e. 

(2) — [^ (*)] V2 = fix) ~S'lp it)]* dt x>c 
3 c 

— [-0U)]372 = fix) = / C [-p («)]UZdt x<c. 
o 

Here tpix) > 0 when x > c, <ßix) < 0 when x < c, and all fractional powers 
have their positive values. 

The functions 

(3) Ym ix) = [<{>' ix)]'* Ai[-A273 e 27r " Z3 0(*)] m = 0, ± 1 

y2U) = [0'(*)]"1/2 BiC-A2'3 <£(*)] 
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satisfy the differential equation 

(4)  y"oo+  f A.'poo+y i^*} I y-o. 

1 

*-    3 (r y 
where 

is the ScAtvorzian derivative of 0. This differential equation follows from 
4.6(1) and 4.5(7). Since the differential equations (1) and (4) differ in 
terms which are comparatively small, we consider the Y's as leading 
terms of formal solutions. 

Under the above assumptions, the differential equation (1) possesses 
solutions which are represented asymptotically, in appropriate sectors 
of the complex ^f plane, by the Y , m = -1, 0, 1, 2. The proof is similar 
to the proofs given in sections 3.3, 3.4, and 4.3; and it will be conducted 
in several steps. 

Let Yix) be any solution of (4), let K (x, t) be thai solution of (4) 
which satisfies the initial conditions 

■dK 
(5) AC«, 0-0,    __(t,t).l, 

ox 

and let <* <x0 <b; then the solution of the integral equation 

(6) y(x).y(x) + J'   Ä(x, 0F(t, X)y(0<fc, 

where 
1 

(7) F(xt A) - -- l^, x } - r(x, AX 

satisfies (1). 

Proof: Equation (6) is a Volterra integral equation with a continuous 
kernel. For any fixed value of X in 5, the existence and uniqueness of 
the solution follows from the general theory of Volterra integral equations 
(or can be established as in sec. 4.3). This solution is twice continuously 
differentiable, and substitution in (1) shows that y satisfies the differ- 
ential equation (1). 
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For a < x, t < b and all A in S. 

(8)      \K{x,t)FU,k)\ 

/I exp|| Re\[~XV3 <p{x)\Vi -{-\v* <f>(t)]*2\\ 

- |A| (|Ar,/6 + \<t>{x)\u4)[\Aru6 + \<t>it)\u*)[<f>'{x)<t>'it)v/z 

where A is independent of x, t, A. All fractional powers have their princi- 
pal values. 

The proof of (8) is different according to the position of x and t 
relative to c and relative to each other, and according to arg A. We shall 
give the details for o <xt t < c, —n/2 < arg A < n/2. Since 

Y^ Y2-Y0 Y'2 =-\2/3m'Bi-AiBi')=n-* Kv\ 

by (3) and 4.6 (4), we see that 

(9)  /a*, O-TTA-^
3
 [y0u) ya(t)-yQ(i) y2(«)] 

satisfies (4) and (5). Now, <^ < 0, and largC-A273 <£)| < 77/8, so that the 
expressions 4.6(14) and 4.6(15) are bounded, and there is a S inde- 
pendent of x, t, and A such that 

iig^ 
fiexpl-f ReC-A^3^]^2! 
d + iAi'^ \<t>\UAn<f>'vn 

with a similar estimate for Y2. Applying these estimates in (9), we prove 
(8) in this case. 

In order to prove (8) in any other case, express YQ and Y ,, and hence 
K, in terms of two linearly independent solutions of (4), of which one is 
bounded as A-► 00 (this was the solution yo in the above case), and then 
apply estimates derived from 4.6(14), (15). 

We shall now establish the existence of solutions y   ,/n = —1,0, 1,2, 
corresponding to, and asymptotically represented by, the y   . It will be 
necessary   to   impose,   in  each  case,  restrictions   on  arg A. These re- 
strictions correspond to the introduction of branch-cuts in the A -plane. 

For y0 and y.i we assume Re A > 0, and define these functions as 
solutions of the Volterra integral equations 

(10)  y0(«)-y0(x)+ /'*:(*, t)F(f. A)y0(t)dt 

• II      »■< 
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(11) y2ix)=Y2{x) + Jc' K(.x,t)Fit,\)y2(t)dt. 

F rv any fixed A in 5,  the  existence of the solutions  of these  integral 
equations follows from the general theory of Volterra integral equations 
(or »,/ successive approximations). We shall prove that y    "^ Y , y   ^ Y 
as A -♦ M. Re A > 0, 

If Re A > 0, Im A ^ 0, and a < * < 6, or if A >0 and a < x < c, we have 
^o ^ 0J y2 £ 0. In this case we may nut y0 = yo z0, yz = Y2 z2, and 
obtain in «^ial equations for z0 and .. Since under these circumstances 
4.6(14) ai.irt 4.6(15) are bounded, and bounded away from zero, we have 

1/2   |A!-'/6+ [0(x)|^ 

\xr/6 + Mit)] 

x exp ^-- Rel [-X** $ (t)]*2 ~ [-A^3 0(x)]»/2 l) , 

and a similar estimate for \Y2{t)/Y2{x)\. Combining these estimates with 
(8), we obtain inequalities. 

(12) 
y0(*) 

K{x,t)F{t, A) < 
|A|^'U) \<f>(t)\* 

(13) 

a S* <x < b      and      ImA^O,       or      a < t < x < c      and      A > 0. 

YAt) 
-f-— K(x,t)FUtX) 
y2(x) 

< 
|A| 0'(Oi0(t)|' 

a<x<bj      |^-c|<|x-c|,      and      Im A ^ 0, 

or     a < x < t < c      and      A > 0 

for the ke'-els of the integral equations for z0 and z 2. For each fixed 
A, the im^gial equation for z , m = 0, 2 has a bounded solution. Let 
Z m (A) be the maximum of \z {x)\ for a < x < b. From the integral equa- 
tion and (12), (13), 

Z    (A)<1 + —Z   (A) 
A      " 

/ 

dt 

IP«)| 'A • 
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For sufficiently large |A|, \Zm (A)| < 2, and from (10), ill), (12), (13), 

(14) /„(x)-y^Oc) [1+ 0U"1)!      uniformly in x, as   A-» «.,      w = 0, 2 

provided that Re A>0, a <x <b, and also that in case of a real A, x is 
restricted to a < x < c. 

In the case of a positive real A, y. and Y. have zeros when x> c, and 
(14) fails to hold near such zeros. An appropriately modified result can 
be derived from (10) and (11) by using (9) and estimates of Y^ (f), Y^ (0. 
From (9) 

y0(*)=y0U)[l + rrX-2/3 Ja
Xy2(0F(f, A)y0(tWt] 

- TTA
-273

 y g (*) J^ y 0 (t) F (t, X) y 0 (t) dt. 

Here the integrals can be broken up, 

a a c 

(14) may be used in the first integral, and thus it can be proved 

as) y0oo= y0(*)[i + o(A",)]+ y^ou-1), 
uniformly in   x,      as      A. -» oo,      c < x < 6,      A > 0. 

Similar is the proof of 

(16) y^x^y^xUi+ou'Ml+yoWmA-'), 

uniformly in   x,      as      A -► <»,      c < x < 6,      A > 0. 

Equations (14) to (16) describe completely the asymptotic properties of 

yoand5V 
Ihe   work on y±1   is similar. We  define y x   and y.,,   by  the  integral 

equations 

(17) y^x) = yii|(x)-J6Ä(x, 0F(t, A)yit(0^ m=  1,-1, 

and analyze the solutions of these equations in a manner similar to the 
analysis of (10), (11), assuming Im A > 0 in the case of y j, and Irr A< 0 
in the case of y_t. Y , and y., have zeros when A. is imaginary and x < c, 
and in this case the asymptotic forms need some modification. The final 
results are 



4.7 DIFFERENTIAL EQUATIONS WITH A LARGE PARAMETER 103 

(18) y, (*) = y, (a.) [1+0 (A"')],      uniformly in     x,      as     A - «. 

0^*i*.      ImA^O,      ReA^O     or     c <>x <>h,     -iA>0 

(i9) y^x^y^xHi + ou-Muy^ooou-'), 

uniformly in   *,      as      A ^ oo,      a < * < c,      -t A > 0 

(20)  y., (x) = y.., (x) [1 + CKA"')],      uniformly in   x,      as      * - » 
a < ^ < *.      Im A < 0,      Re A ^ 0,      or     c < x < fe,      t A > 0 

(21) y_,(x) = y_t(x) [i + CXA'')] + y,(x)(^(A-1:, 

uniformly in  x,      as     A -► «>,      a ^ x < c,      i A > 0, 

Equations (14) to (16) and (18) to (21) establish the result sUAe 3 ~: 
the beginning of this section. By a inore careful discussion of the ini>-gra^ 
equations it is possible to show that also.y'  ~ y' . 

If r (x. A) can be expanded in powers of A-1, then it is poss^ i . -^ 
develop formal solutions of (1). The approximations discussed ii; Tiis 
section appear as the leading terms of the formal solutions. As in tue 
case discussed in the earlier parts of this chapter, there are two kin^«:' 
of formal solutions. The first kind corresponds to 4.2(3), and it is of the 
form 

-n-1 (22) y(x)    2    an(x)A-n+ y'(x)    S    ßOOA 
FI= 0 n= 0 

where y is a solution of (4), and the a (x) and /3 (x) are functions of x 
which are independent of A. Recurrent differential equations for these 
functions may be obtained by substituting (22) in (1), and equating 
coefficients of like powers of A. This approach wasusedby Langer (1949). 

A second kind of forma) solution corresponds to 4.2(9). 'ibis solution 
is of the form (3), except that instead of 0(x) we have a function 0(x, A) 
which depends on A, and possesses a formal expansion 

(23) 2  ^  (x)A"n, 
n = 0 

where ^)0(x) is the differentiable real  solution of 4.5(7), and recurrent 
differential equations for </>,, <$>v ... are obtained by substituting 
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(34)  0'"X/lt(-A2/30) 

in  (1), and equating coefficients of powers of A. Such solutions were 
used by Cherry (1950). 

The differential equation 

y " + q\x. A) y = 0, ? (*, A) =    1   q Ax) A2"» 
n= 0     " 

is rrore general that (1), because it contains the term q, (x)A. This term 
causes certain additional complications which were also discussed by 
Langer (1949). 

I he extension of these results to the case of a complex variable was 
undertaken both by Langer (1932) and Cherry (1950); the extension to 
unbounded x was investigated by Cherry (1950). 

4.8.  Uniform asymptotic representations of Bessel functims 

We conclude with an application of the results of the preceding sec- 
tion to the differential equation 4.4 (3), thereby obtaining an asymptotic 
representation of J-A.Xx) which holds, uniformly for all positive x, as 
A -» oo. Re A > 0. The result to be obtained includes the results of sec. 
4.4 as farad they relate to J^Ax), and in addition fills the gap, b <x < a 
(6 < 1 < a) left by the work of sec. 4.4. 

Let - us, then, apply the methods of the preceding section to the 
differential equation 4.4(3), where 

1 .1 

4x: (1)    p(x)=l-—   , rU, A)--—; 

The  transition point is at x = 1. The function <f> is determined by the 
differential equation 

(2)    ^«A'^l-— , 
x 

and 4.7(2) becomes 

(3) -i-<b(x)Yn = $x (r*-\v/zdt 
3 x 

1 + (1 — xz)x 

= _(l_x*)« + l0g   --/3(x) 0<x<l 
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(4)    ~ t0(*)]3/2 = /'(!- f2)"* dt = (*2 - 1),/2 - cos-' *-' --. /(*) 

1 < X < oo, 

see also 4.4(4) and (14)* 
Since <f){x) is an analytic function, and $' Oe)?^ 0, clearly 

1 . 1   «6'"       3   S d>"\2        1 

2 2   ^S'       4   K^' /        4*2 

is a continuous function of x for 0 < a: < »o. To investigate the behavior 
of   F (x) as * -» 0 or a: -» oo, we use the chain rule 

f du\2 

■A 

for the Schwarzian derivative, with u = ß when « < 1,  and u = / when 
x > 1. By a simple computation 

F0c) = 

Fix)' 

5ß'2       1 1 5/S'2 4 + x
2 

+ — }/S, xl- ,—7 = 

5/"2 4 + x2 

IS^S2        2    " 4x2       18/S2 4(1-x2)2 

IS/2       4(1-x2)2 

From (3) and (4), 

/S-O(Iogx), /3'=0(x~1) as     x-*0 

f~0{x\ f -0(1) as     x-oo, 

and it follows that 

(5)    FM = 0 [(x log x)-2] as        x - 0 

F(x) = 0(x~2) as x-♦ oo. 

Furthermore, as in sec. 4.7, 

0 <x < 1 

1 <x < 

(6) 
^-•" -   \\\<f>'M\<f>b)\*        |A| 1-«' 

except near zeros of Y0(x). 

mm»  ^   ■ n ' 
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We thus see that we iray take x = 0 as the fixed limit in the integral 
equation for z0 (x). For the kernel we have estimates from (5) and (6) 
which show that the kernel is integrable in (0, «>). I he method of sec. 
4.7 may be applied to our problem in spite of the singular point at x = 0 
of the differential equation. Equation 4.7(14) with m = 0 holds, and since 
it follows from (5) and (6) that 

rl^) K(..,)f(0 *.„( /"^W_L_) 
Jc   \Y0{*) v Jo    «dogOy     VJog*/ 

as        a; -» 0, 

we see that for small x, the term 0{\~x) in 4.7(14) may be strengthened 
to 

VAlogx   / 

We   then   conclude   that   the   differential  equation   4.4(3)  possesses   a 
soli.Ion y0 (*) for which 

(8)    y0(x) = 0' -K AH-X*3 <{>) [1 + 0(A-,)], 

holds for 0 < x < oo, A -♦ e». Re A > 0, except that in the case of a positive 
real X, and x > 1, the error term aeeds some modification. For 0 < x < 6 
< 1, the error term may be strengthened to (7). 

In order to identify y0 in terms of ßessel functions, let us take 
0<x<6<lin (8), so that 0(x) < ^(6) < 0, the Airy function may be 
replaced by its asymptotic representation 4.6(11), the O-term may be 
strengthened to (7), and we obtain 

2 

1 
= — rr  ,/zX 1/2   \"l/6 

L Vv Iog * / J 

ae^r1+0/Lj—^i o 
^A log x y j 

< x < 6 < 1, 

where a is the function defined in 4.4(5). A comparison with 4.4(6) and 
4.4(13) now shows that 

2 „.1/2 
^Ux) = ——- e^A^'^x-'^U) 0<x<~ 

I  vA +1) 
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and hence 

(9) J^A«)- —  «"^ A^+,/«(x0' r,/2 ^iC-A^V) fl + OCA"')], 
1 ^A ■♦■A/ 

with the same remarks about the error term as in (8)« By applying Stirling's 
formula to r(A+ 1), this result may be put in the simpler, if weaker form 

(10) JA(Ax)= f YA2/3*«p')',/2/l^(■-A^/3^)[l + 0(A-,)], 

uniformly in x, 0 < x < »o, as A -» o». Re A > 0, except that the error term 
needs some modification near zeros of Ai{—\2/a <£). Note that in (10) 
the error term contains the error of Stirling's formula and cannot be 
strengthened for small x. 

In the process of deriving (7) we have seen that our present result 
includes 4.4(1). Let us show that (7) also includes the sum of the two 
equations 4.4(2). lo do this, we assume x > a > 1, <£(*) > i^>(a) > 0, and 
apply 4.6(12) to show that 

JK{\x)^ f~-n\xj '*$'-* jT* cos[A/U)-   ff/4] 

1 < a < x < 

or 

/l        N-« 
1 < a < x < oo. c7^(Ax)~f — wAx j   H a(x)cos[A/(x)-7r/4] 

and this is in agreement with 4.4 (2). 
The main result of this section, (6), has b6en extended to complex 

values of x, and approximations of higher order have been obtained by 
Cherry (1948). 
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